Publikation: Statistical methods to identify mechanisms in studies of eco-evolutionary dynamics
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
While the reciprocal effects of ecological and evolutionary dynamics are increasingly recognized as an important driver for biodiversity, detection of such eco-evolutionary feedbacks, their underlying mechanisms, and their consequences remains challenging. Eco-evolutionary dynamics occur at different spatial and temporal scales and can leave signatures at different levels of organization (e.g., gene, protein, trait, community) that are often difficult to detect. Recent advances in statistical methods combined with alternative hypothesis testing provides a promising approach to identify potential eco-evolutionary drivers for observed data even in non-model systems that are not amenable to experimental manipulation. We discuss recent advances in eco-evolutionary modeling and statistical methods and discuss challenges for fitting mechanistic models to eco-evolutionary data.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
PANTEL, Jelena H., Lutz BECKS, 2023. Statistical methods to identify mechanisms in studies of eco-evolutionary dynamics. In: Trends in Ecology & Evolution. Elsevier. 2023, 38(8), S. 760-772. ISSN 0169-5347. eISSN 1872-8383. Verfügbar unter: doi: 10.1016/j.tree.2023.03.011BibTex
@article{Pantel2023-08Stati-71720, year={2023}, doi={10.1016/j.tree.2023.03.011}, title={Statistical methods to identify mechanisms in studies of eco-evolutionary dynamics}, number={8}, volume={38}, issn={0169-5347}, journal={Trends in Ecology & Evolution}, pages={760--772}, author={Pantel, Jelena H. and Becks, Lutz} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/71720"> <dc:creator>Pantel, Jelena H.</dc:creator> <dc:contributor>Pantel, Jelena H.</dc:contributor> <dcterms:abstract>While the reciprocal effects of ecological and evolutionary dynamics are increasingly recognized as an important driver for biodiversity, detection of such eco-evolutionary feedbacks, their underlying mechanisms, and their consequences remains challenging. Eco-evolutionary dynamics occur at different spatial and temporal scales and can leave signatures at different levels of organization (e.g., gene, protein, trait, community) that are often difficult to detect. Recent advances in statistical methods combined with alternative hypothesis testing provides a promising approach to identify potential eco-evolutionary drivers for observed data even in non-model systems that are not amenable to experimental manipulation. We discuss recent advances in eco-evolutionary modeling and statistical methods and discuss challenges for fitting mechanistic models to eco-evolutionary data.</dcterms:abstract> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/71720"/> <dcterms:title>Statistical methods to identify mechanisms in studies of eco-evolutionary dynamics</dcterms:title> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-12-17T08:30:41Z</dcterms:available> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-12-17T08:30:41Z</dc:date> <dc:language>eng</dc:language> <dc:contributor>Becks, Lutz</dc:contributor> <dc:creator>Becks, Lutz</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:issued>2023-08</dcterms:issued> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> </rdf:Description> </rdf:RDF>