Publikation: Orthogonal Pfister involutions in characteristic two
Lade...
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2014
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Journal of Pure and Applied Algebra. 2014, 218(10), pp. 1900-1915. ISSN 0022-4049. eISSN 1873-1376. Available under: doi: 10.1016/j.jpaa.2014.02.013
Zusammenfassung
We show that over a field of characteristic 2 a central simple algebra with orthogonal involution that decomposes into a product of quaternion algebras with involution is either anisotropic or metabolic. We use this to define an invariant of such orthogonal involutions that completely determines the isotropy behaviour of the involution. We also give an example of a non-totally decomposable algebra with orthogonal involution that becomes totally decomposable over every splitting field of the algebra.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690
DOLPHIN, Andrew, 2014. Orthogonal Pfister involutions in characteristic two. In: Journal of Pure and Applied Algebra. 2014, 218(10), pp. 1900-1915. ISSN 0022-4049. eISSN 1873-1376. Available under: doi: 10.1016/j.jpaa.2014.02.013BibTex
@article{Dolphin2014Ortho-29319, year={2014}, doi={10.1016/j.jpaa.2014.02.013}, title={Orthogonal Pfister involutions in characteristic two}, number={10}, volume={218}, issn={0022-4049}, journal={Journal of Pure and Applied Algebra}, pages={1900--1915}, author={Dolphin, Andrew} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/29319"> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-11-26T10:59:35Z</dc:date> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/29319"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Dolphin, Andrew</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-11-26T10:59:35Z</dcterms:available> <dc:contributor>Dolphin, Andrew</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:language>eng</dc:language> <dcterms:abstract xml:lang="eng">We show that over a field of characteristic 2 a central simple algebra with orthogonal involution that decomposes into a product of quaternion algebras with involution is either anisotropic or metabolic. We use this to define an invariant of such orthogonal involutions that completely determines the isotropy behaviour of the involution. We also give an example of a non-totally decomposable algebra with orthogonal involution that becomes totally decomposable over every splitting field of the algebra.</dcterms:abstract> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:title>Orthogonal Pfister involutions in characteristic two</dcterms:title> <dcterms:issued>2014</dcterms:issued> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> </rdf:Description> </rdf:RDF>