Publikation:

Orthogonal Pfister involutions in characteristic two

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2014

Autor:innen

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Journal of Pure and Applied Algebra. 2014, 218(10), pp. 1900-1915. ISSN 0022-4049. eISSN 1873-1376. Available under: doi: 10.1016/j.jpaa.2014.02.013

Zusammenfassung

We show that over a field of characteristic 2 a central simple algebra with orthogonal involution that decomposes into a product of quaternion algebras with involution is either anisotropic or metabolic. We use this to define an invariant of such orthogonal involutions that completely determines the isotropy behaviour of the involution. We also give an example of a non-totally decomposable algebra with orthogonal involution that becomes totally decomposable over every splitting field of the algebra.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690DOLPHIN, Andrew, 2014. Orthogonal Pfister involutions in characteristic two. In: Journal of Pure and Applied Algebra. 2014, 218(10), pp. 1900-1915. ISSN 0022-4049. eISSN 1873-1376. Available under: doi: 10.1016/j.jpaa.2014.02.013
BibTex
@article{Dolphin2014Ortho-29319,
  year={2014},
  doi={10.1016/j.jpaa.2014.02.013},
  title={Orthogonal Pfister involutions in characteristic two},
  number={10},
  volume={218},
  issn={0022-4049},
  journal={Journal of Pure and Applied Algebra},
  pages={1900--1915},
  author={Dolphin, Andrew}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/29319">
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-11-26T10:59:35Z</dc:date>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/29319"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Dolphin, Andrew</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-11-26T10:59:35Z</dcterms:available>
    <dc:contributor>Dolphin, Andrew</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:language>eng</dc:language>
    <dcterms:abstract xml:lang="eng">We show that over a field of characteristic 2 a central simple algebra with orthogonal involution that decomposes into a product of quaternion algebras with involution is either anisotropic or metabolic. We use this to define an invariant of such orthogonal involutions that completely determines the isotropy behaviour of the involution. We also give an example of a non-totally decomposable algebra with orthogonal involution that becomes totally decomposable over every splitting field of the algebra.</dcterms:abstract>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:title>Orthogonal Pfister involutions in characteristic two</dcterms:title>
    <dcterms:issued>2014</dcterms:issued>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Begutachtet
Diese Publikation teilen