Publikation: Study of the cone of sums of squares plus sums of nonnegative circuit forms
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
In this article, we combine sums of squares (SOS) and sums of nonnegative circuit (SONC) forms, two independent nonnegativity certificates for real homogeneous polynomials. We consider the convex cone SOS+SONC of forms that decompose into a sum of an SOS and a SONC form and study it from a geometric point of view. We show that the SOS+SONC cone is proper and neither closed under multiplication nor under linear transformation of variables. Moreover, we present an alternative proof of an analog of Hilbert’s 1888 Theorem for the SOS+SONC cone and prove that in the non-Hilbert cases it provides a proper superset of the union of the SOS and SONC cones. This follows by exploiting a new necessary condition for membership in the SONC cone.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
DRESSLER, Mareike, Salma KUHLMANN, Moritz SCHICK, 2025. Study of the cone of sums of squares plus sums of nonnegative circuit forms. In: Advances in Geometry. De Gruyter. 2025, 25(1), S. 127-146. ISSN 1615-715X. eISSN 1615-7168. Verfügbar unter: doi: 10.1515/advgeom-2024-0031BibTex
@article{Dressler2025-01-29Study-72193, title={Study of the cone of sums of squares plus sums of nonnegative circuit forms}, year={2025}, doi={10.1515/advgeom-2024-0031}, number={1}, volume={25}, issn={1615-715X}, journal={Advances in Geometry}, pages={127--146}, author={Dressler, Mareike and Kuhlmann, Salma and Schick, Moritz} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/72193"> <dc:contributor>Dressler, Mareike</dc:contributor> <dc:creator>Schick, Moritz</dc:creator> <dcterms:issued>2025-01-29</dcterms:issued> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/72193"/> <dc:language>eng</dc:language> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:title>Study of the cone of sums of squares plus sums of nonnegative circuit forms</dcterms:title> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:abstract>In this article, we combine sums of squares (SOS) and sums of nonnegative circuit (SONC) forms, two independent nonnegativity certificates for real homogeneous polynomials. We consider the convex cone SOS+SONC of forms that decompose into a sum of an SOS and a SONC form and study it from a geometric point of view. We show that the SOS+SONC cone is proper and neither closed under multiplication nor under linear transformation of variables. Moreover, we present an alternative proof of an analog of Hilbert’s 1888 Theorem for the SOS+SONC cone and prove that in the non-Hilbert cases it provides a proper superset of the union of the SOS and SONC cones. This follows by exploiting a new necessary condition for membership in the SONC cone.</dcterms:abstract> <dc:creator>Kuhlmann, Salma</dc:creator> <dc:creator>Dressler, Mareike</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-02-06T09:48:37Z</dcterms:available> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-02-06T09:48:37Z</dc:date> <dc:contributor>Schick, Moritz</dc:contributor> <dc:contributor>Kuhlmann, Salma</dc:contributor> </rdf:Description> </rdf:RDF>