Publikation:

Study of the cone of sums of squares plus sums of nonnegative circuit forms

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2025

Autor:innen

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Advances in Geometry. De Gruyter. 2025, 25(1), S. 127-146. ISSN 1615-715X. eISSN 1615-7168. Verfügbar unter: doi: 10.1515/advgeom-2024-0031

Zusammenfassung

In this article, we combine sums of squares (SOS) and sums of nonnegative circuit (SONC) forms, two independent nonnegativity certificates for real homogeneous polynomials. We consider the convex cone SOS+SONC of forms that decompose into a sum of an SOS and a SONC form and study it from a geometric point of view. We show that the SOS+SONC cone is proper and neither closed under multiplication nor under linear transformation of variables. Moreover, we present an alternative proof of an analog of Hilbert’s 1888 Theorem for the SOS+SONC cone and prove that in the non-Hilbert cases it provides a proper superset of the union of the SOS and SONC cones. This follows by exploiting a new necessary condition for membership in the SONC cone.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

Nonnegative polynomial, sum of squares, sum of nonnegative circuit polynomials, Hilbert’s 1888 Theorem, polynomial optimization

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690DRESSLER, Mareike, Salma KUHLMANN, Moritz SCHICK, 2025. Study of the cone of sums of squares plus sums of nonnegative circuit forms. In: Advances in Geometry. De Gruyter. 2025, 25(1), S. 127-146. ISSN 1615-715X. eISSN 1615-7168. Verfügbar unter: doi: 10.1515/advgeom-2024-0031
BibTex
@article{Dressler2025-01-29Study-72193,
  title={Study of the cone of sums of squares plus sums of nonnegative circuit forms},
  year={2025},
  doi={10.1515/advgeom-2024-0031},
  number={1},
  volume={25},
  issn={1615-715X},
  journal={Advances in Geometry},
  pages={127--146},
  author={Dressler, Mareike and Kuhlmann, Salma and Schick, Moritz}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/72193">
    <dc:contributor>Dressler, Mareike</dc:contributor>
    <dc:creator>Schick, Moritz</dc:creator>
    <dcterms:issued>2025-01-29</dcterms:issued>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/72193"/>
    <dc:language>eng</dc:language>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:title>Study of the cone of sums of squares plus sums of nonnegative circuit forms</dcterms:title>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:abstract>In this article, we combine sums of squares (SOS) and sums of nonnegative circuit (SONC) forms, two independent nonnegativity certificates for real homogeneous polynomials. We consider the convex cone SOS+SONC of forms that decompose into a sum of an SOS and a SONC form and study it from a geometric point of view. We show that the SOS+SONC cone is proper and neither closed under multiplication nor under linear transformation of variables. Moreover, we present an alternative proof of an analog of Hilbert’s 1888 Theorem for the SOS+SONC cone and prove that in the non-Hilbert cases it provides a proper superset of the union of the SOS and SONC cones. This follows by exploiting a new necessary condition for membership in the SONC cone.</dcterms:abstract>
    <dc:creator>Kuhlmann, Salma</dc:creator>
    <dc:creator>Dressler, Mareike</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-02-06T09:48:37Z</dcterms:available>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-02-06T09:48:37Z</dc:date>
    <dc:contributor>Schick, Moritz</dc:contributor>
    <dc:contributor>Kuhlmann, Salma</dc:contributor>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Unbekannt
Diese Publikation teilen