Publikation: Maximum Gap Minimization in Polylines
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Given a polyline consisting of n segments, we study the problem of selecting k of its segments such that the maximum induced gap length without a selected segment is minimized. This optimization problem has applications in the domains of trajectory visualization (see Fig. 1) and facility location. We design several heuristics and exact algorithms for simple polylines, along with algorithm engineering techniques to achieve good practical running times even for large values of n and k. The fastest exact algorithm is based on dynamic programming and exhibits a running time of O(nk) while using space linear in n. Furthermore, we consider incremental problem variants. For the case where a given set of k segments shall be augmented by a single additional segment, we devise an optimal algorithm which runs in O(k+logn) on a suitable polyline representation. If not only a single segment but k′ segments shall be added, we can compute the optimal segment set in time O(nk′) by modifying the dynamic programming approach for the original problem. Experiments on large sets of real-world trajectories as well as artificial polylines show the trade-offs between quality and running time of the different approaches.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
STANKOV, Toni, Sabine STORANDT, 2020. Maximum Gap Minimization in Polylines. 18th International Symposium, W2GIS 2020. Wuhan, China, 13. Nov. 2020 - 14. Nov. 2020. In: DI MARTINO, Sergio, ed., Zhixiang FANG, ed., Ki-Joune LI, ed.. Web and Wireless Geographical Information Systems : 18th International Symposium, W2GIS 2020, Wuhan, China, November 13-14, 2020, Proceedings. Cham: Springer, 2020, pp. 181-196. Lecture Notes in Computer Science. 12473. ISSN 0302-9743. eISSN 1611-3349. ISBN 978-3-030-60951-1. Available under: doi: 10.1007/978-3-030-60952-8_19BibTex
@inproceedings{Stankov2020Maxim-51734, year={2020}, doi={10.1007/978-3-030-60952-8_19}, title={Maximum Gap Minimization in Polylines}, number={12473}, isbn={978-3-030-60951-1}, issn={0302-9743}, publisher={Springer}, address={Cham}, series={Lecture Notes in Computer Science}, booktitle={Web and Wireless Geographical Information Systems : 18th International Symposium, W2GIS 2020, Wuhan, China, November 13-14, 2020, Proceedings}, pages={181--196}, editor={Di Martino, Sergio and Fang, Zhixiang and Li, Ki-Joune}, author={Stankov, Toni and Storandt, Sabine} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/51734"> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:rights>terms-of-use</dc:rights> <dc:creator>Stankov, Toni</dc:creator> <dc:contributor>Storandt, Sabine</dc:contributor> <dc:language>eng</dc:language> <dc:creator>Storandt, Sabine</dc:creator> <dcterms:abstract xml:lang="eng">Given a polyline consisting of n segments, we study the problem of selecting k of its segments such that the maximum induced gap length without a selected segment is minimized. This optimization problem has applications in the domains of trajectory visualization (see Fig. 1) and facility location. We design several heuristics and exact algorithms for simple polylines, along with algorithm engineering techniques to achieve good practical running times even for large values of n and k. The fastest exact algorithm is based on dynamic programming and exhibits a running time of O(nk) while using space linear in n. Furthermore, we consider incremental problem variants. For the case where a given set of k segments shall be augmented by a single additional segment, we devise an optimal algorithm which runs in O(k+logn) on a suitable polyline representation. If not only a single segment but k′ segments shall be added, we can compute the optimal segment set in time O(nk′) by modifying the dynamic programming approach for the original problem. Experiments on large sets of real-world trajectories as well as artificial polylines show the trade-offs between quality and running time of the different approaches.</dcterms:abstract> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-11-11T09:37:29Z</dcterms:available> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-11-11T09:37:29Z</dc:date> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/51734"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:issued>2020</dcterms:issued> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:title>Maximum Gap Minimization in Polylines</dcterms:title> <dc:contributor>Stankov, Toni</dc:contributor> </rdf:Description> </rdf:RDF>