Publikation: Maximum entropy for reduced moment problems
Lade...
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2000
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Mathematical Models and Methods in Applied Sciences. 2000, 10(07), pp. 1001-1025. ISSN 0218-2025. eISSN 1793-6314. Available under: doi: 10.1142/S0218202500000513
Zusammenfassung
The existence of maximum entropy solutions for a wide class of reduced moment problems on arbitrary open subsets of ℝd is considered. In particular, new results for the case of unbounded domains are obtained. A precise condition is presented under which solvability of the moment problem implies existence of a maximum entropy solution.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690
JUNK, Michael, 2000. Maximum entropy for reduced moment problems. In: Mathematical Models and Methods in Applied Sciences. 2000, 10(07), pp. 1001-1025. ISSN 0218-2025. eISSN 1793-6314. Available under: doi: 10.1142/S0218202500000513BibTex
@article{Junk2000Maxim-25472, year={2000}, doi={10.1142/S0218202500000513}, title={Maximum entropy for reduced moment problems}, number={07}, volume={10}, issn={0218-2025}, journal={Mathematical Models and Methods in Applied Sciences}, pages={1001--1025}, author={Junk, Michael} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/25472"> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:contributor>Junk, Michael</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-12-18T07:27:25Z</dc:date> <dcterms:issued>2000</dcterms:issued> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dcterms:abstract xml:lang="eng">The existence of maximum entropy solutions for a wide class of reduced moment problems on arbitrary open subsets of ℝ<sup>d</sup> is considered. In particular, new results for the case of unbounded domains are obtained. A precise condition is presented under which solvability of the moment problem implies existence of a maximum entropy solution.</dcterms:abstract> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:title>Maximum entropy for reduced moment problems</dcterms:title> <dc:creator>Junk, Michael</dc:creator> <dcterms:bibliographicCitation>Mathematical models & methods in applied sciences : M3AS ; 10 (2000), 7. - 1001-1025</dcterms:bibliographicCitation> <dc:language>eng</dc:language> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/25472"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-12-18T07:27:25Z</dcterms:available> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:rights>terms-of-use</dc:rights> </rdf:Description> </rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein