Optimized data preprocessing for multivariate analysis applied to 99mTc-ECD SPECT data sets of Alzheimer's patients and asymptomatic controls

Lade...
Vorschaubild
Dateien
merhofetal.pdf
merhofetal.pdfGröße: 9.24 MBDownloads: 565
Datum
2011
Autor:innen
Platsch, Günther
Declerck, Jerome
Weih, Markus
Kornhuber, Johannes
Kuwert, Torsten
Matthews, Julian C.
Herholz, Karl
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Journal of Cerebral Blood Flow & Metabolism. 2011, 31(1), pp. 371-383. ISSN 0271-678X. eISSN 1559-7016. Available under: doi: 10.1038/jcbfm.2010.112
Zusammenfassung

Multivariate image analysis has shown potential for classification between Alzheimer's disease (AD) patients and healthy controls with a high-diagnostic performance. As image analysis of positron emission tomography (PET) and single photon emission computed tomography (SPECT) data critically depends on appropriate data preprocessing, the focus of this work is to investigate the impact of data preprocessing on the outcome of the analysis, and to identify an optimal data preprocessing method. In this work, technetium-99methylcysteinatedimer (99mTc-ECD) SPECT data sets of 28 AD patients and 28 asymptomatic controls were used for the analysis. For a series of different data preprocessing methods, which includes methods for spatial normalization, smoothing, and intensity normalization, multivariate image analysis based on principal component analysis (PCA) and Fisher discriminant analysis (FDA) was applied. Bootstrap resampling was used to investigate the robustness of the analysis and the classification accuracy, depending on the data preprocessing method. Depending on the combination of preprocessing methods, significant differences regarding the classification accuracy were observed. For 99mTc-ECD SPECT data, the optimal data preprocessing method in terms of robustness and classification accuracy is based on affine registration, smoothing with a Gaussian of 12 mm full width half maximum, and intensity normalization based on the 25% brightest voxels within the whole-brain region.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Alzheimer's disease (AD), intensity normalization, multivariate analysis, principal component analysis (PCA), single photon emission computed tomography (SPECT), spatial normalization
Konferenz
Rezension
undefined / . - undefined, undefined
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Datensätze
Zitieren
ISO 690MERHOF, Dorit, Pawel J. MARKIEWICZ, Günther PLATSCH, Jerome DECLERCK, Markus WEIH, Johannes KORNHUBER, Torsten KUWERT, Julian C. MATTHEWS, Karl HERHOLZ, 2011. Optimized data preprocessing for multivariate analysis applied to 99mTc-ECD SPECT data sets of Alzheimer's patients and asymptomatic controls. In: Journal of Cerebral Blood Flow & Metabolism. 2011, 31(1), pp. 371-383. ISSN 0271-678X. eISSN 1559-7016. Available under: doi: 10.1038/jcbfm.2010.112
BibTex
@article{Merhof2011-01Optim-14441,
  year={2011},
  doi={10.1038/jcbfm.2010.112},
  title={Optimized data preprocessing for multivariate analysis applied to 99mTc-ECD SPECT data sets of Alzheimer's patients and asymptomatic controls},
  number={1},
  volume={31},
  issn={0271-678X},
  journal={Journal of Cerebral Blood Flow & Metabolism},
  pages={371--383},
  author={Merhof, Dorit and Markiewicz, Pawel J. and Platsch, Günther and Declerck, Jerome and Weih, Markus and Kornhuber, Johannes and Kuwert, Torsten and Matthews, Julian C. and Herholz, Karl}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/14441">
    <dc:contributor>Merhof, Dorit</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Markiewicz, Pawel J.</dc:contributor>
    <dc:creator>Platsch, Günther</dc:creator>
    <dc:contributor>Kornhuber, Johannes</dc:contributor>
    <dc:contributor>Weih, Markus</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-11-08T09:51:47Z</dc:date>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/14441/2/merhofetal.pdf"/>
    <dc:contributor>Declerck, Jerome</dc:contributor>
    <dcterms:title>Optimized data preprocessing for multivariate analysis applied to 99mTc-ECD SPECT data sets of Alzheimer's patients and asymptomatic controls</dcterms:title>
    <dc:creator>Declerck, Jerome</dc:creator>
    <dc:creator>Merhof, Dorit</dc:creator>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/14441"/>
    <dc:language>eng</dc:language>
    <dc:contributor>Herholz, Karl</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Markiewicz, Pawel J.</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-11-08T09:51:47Z</dcterms:available>
    <dc:creator>Kuwert, Torsten</dc:creator>
    <dc:creator>Weih, Markus</dc:creator>
    <dc:contributor>Matthews, Julian C.</dc:contributor>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/14441/2/merhofetal.pdf"/>
    <dc:contributor>Platsch, Günther</dc:contributor>
    <dc:contributor>Kuwert, Torsten</dc:contributor>
    <dcterms:bibliographicCitation>First publ. in: Journal of Cerebral Blood Flow &amp; Metabolism ; 31 (2011), 1. - S. 371-383</dcterms:bibliographicCitation>
    <dc:creator>Kornhuber, Johannes</dc:creator>
    <dc:rights>terms-of-use</dc:rights>
    <dc:creator>Matthews, Julian C.</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:abstract xml:lang="eng">Multivariate image analysis has shown potential for classification between Alzheimer's disease (AD) patients and healthy controls with a high-diagnostic performance. As image analysis of positron emission tomography (PET) and single photon emission computed tomography (SPECT) data critically depends on appropriate data preprocessing, the focus of this work is to investigate the impact of data preprocessing on the outcome of the analysis, and to identify an optimal data preprocessing method. In this work, technetium-99methylcysteinatedimer (99mTc-ECD) SPECT data sets of 28 AD patients and 28 asymptomatic controls were used for the analysis. For a series of different data preprocessing methods, which includes methods for spatial normalization, smoothing, and intensity normalization, multivariate image analysis based on principal component analysis (PCA) and Fisher discriminant analysis (FDA) was applied. Bootstrap resampling was used to investigate the robustness of the analysis and the classification accuracy, depending on the data preprocessing method. Depending on the combination of preprocessing methods, significant differences regarding the classification accuracy were observed. For 99mTc-ECD SPECT data, the optimal data preprocessing method in terms of robustness and classification accuracy is based on affine registration, smoothing with a Gaussian of 12 mm full width half maximum, and intensity normalization based on the 25% brightest voxels within the whole-brain region.</dcterms:abstract>
    <dcterms:issued>2011-01</dcterms:issued>
    <dc:creator>Herholz, Karl</dc:creator>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen