Publikation: Optimization strategy for parameter sampling in the reduced basis method
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
The reduced basis (RB) method is an efficient technique to solve parametric partial differential equations in a multi-query context, where the solution has to be computed for many different parameter values. The RB method drastically reduces the computational time for any additional solution (during the so-called online stage) once an initial set of basis functions has been computed (during the so-called offline stage) still retaining a certified level of accuracy. The greedy algorithm is the classical sampling strategy to select parameter values that define the set of basis functions. Here, an alternative and competitive approach for choosing the parameter values is presented. The new approach is based on an optimization problem for the parameters that allows to reduce the computational complexity of the offline stage of the RB method and improve its effectiveness.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
IAPICHINO, Laura, Stefan VOLKWEIN, 2015. Optimization strategy for parameter sampling in the reduced basis method. MATHMOD 2015 : 8th Vienna International Conference on Mathematical Modelling. Wien, 18. Feb. 2015 - 20. Feb. 2015. In: BREITENECKER, Felix, ed. and others. 8th Vienna International Conference on Mathematical Modelling : MATHMOD 2015 ; Proceedings. Elsevier, 2015, pp. 707-712. IFAC-PapersOnline. 48,1. eISSN 2405-8963. Available under: doi: 10.1016/j.ifacol.2015.05.020BibTex
@inproceedings{Iapichino2015Optim-32354, year={2015}, doi={10.1016/j.ifacol.2015.05.020}, title={Optimization strategy for parameter sampling in the reduced basis method}, number={48,1}, publisher={Elsevier}, series={IFAC-PapersOnline}, booktitle={8th Vienna International Conference on Mathematical Modelling : MATHMOD 2015 ; Proceedings}, pages={707--712}, editor={Breitenecker, Felix}, author={Iapichino, Laura and Volkwein, Stefan} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/32354"> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:creator>Iapichino, Laura</dc:creator> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/32354"/> <dc:contributor>Volkwein, Stefan</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/> <dc:contributor>Iapichino, Laura</dc:contributor> <dcterms:issued>2015</dcterms:issued> <dc:language>eng</dc:language> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Volkwein, Stefan</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-12-07T09:50:30Z</dcterms:available> <dcterms:title>Optimization strategy for parameter sampling in the reduced basis method</dcterms:title> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:abstract xml:lang="eng">The reduced basis (RB) method is an efficient technique to solve parametric partial differential equations in a multi-query context, where the solution has to be computed for many different parameter values. The RB method drastically reduces the computational time for any additional solution (during the so-called online stage) once an initial set of basis functions has been computed (during the so-called offline stage) still retaining a certified level of accuracy. The greedy algorithm is the classical sampling strategy to select parameter values that define the set of basis functions. Here, an alternative and competitive approach for choosing the parameter values is presented. The new approach is based on an optimization problem for the parameters that allows to reduce the computational complexity of the offline stage of the RB method and improve its effectiveness.</dcterms:abstract> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-12-07T09:50:30Z</dc:date> </rdf:Description> </rdf:RDF>