Publikation:

Neural Network Based Prediction of Conformational Free Energies : a New Route toward Coarse-Grained Simulation Models

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2017

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Journal of Chemical Theory and Computation : JCTC. 2017, 13(12), pp. 6213-6221. ISSN 1549-9618. eISSN 1549-9626. Available under: doi: 10.1021/acs.jctc.7b00864

Zusammenfassung

Coarse-grained (CG) simulation models have become very popular tools to study complex molecular systems with great computational efficiency on length and time scales that are inaccessible to simulations at atomistic resolution. In so-called bottom-up coarse-graining strategies, the interactions in the CG model are devised such that an accurate representation of an atomistic sampling of configurational phase space is achieved. This means the coarse-graining methods use the underlying multibody potential of mean force (i.e., free-energy surface) derived from the atomistic simulation as parametrization target. Here, we present a new method where a neural network (NN) is used to extract high-dimensional free energy surfaces (FES) from molecular dynamics (MD) simulation trajectories. These FES are used for simulations on a CG level of resolution. The method is applied to simulating homo-oligo-peptides (oligo-glutamic-acid (oligo-glu) and oligo-aspartic-acid (oligo-asp)) of different lengths. We show that the NN not only is able to correctly describe the free-energy surface for oligomer lengths that it was trained on but also is able to predict the conformational sampling of longer chains.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
540 Chemie

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690LEMKE, Tobias, Christine PETER, 2017. Neural Network Based Prediction of Conformational Free Energies : a New Route toward Coarse-Grained Simulation Models. In: Journal of Chemical Theory and Computation : JCTC. 2017, 13(12), pp. 6213-6221. ISSN 1549-9618. eISSN 1549-9626. Available under: doi: 10.1021/acs.jctc.7b00864
BibTex
@article{Lemke2017-12-12Neura-41117,
  year={2017},
  doi={10.1021/acs.jctc.7b00864},
  title={Neural Network Based Prediction of Conformational Free Energies : a New Route toward Coarse-Grained Simulation Models},
  number={12},
  volume={13},
  issn={1549-9618},
  journal={Journal of Chemical Theory and Computation : JCTC},
  pages={6213--6221},
  author={Lemke, Tobias and Peter, Christine}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41117">
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/41117"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/29"/>
    <dc:creator>Lemke, Tobias</dc:creator>
    <dc:contributor>Peter, Christine</dc:contributor>
    <dcterms:title>Neural Network Based Prediction of Conformational Free Energies : a New Route toward Coarse-Grained Simulation Models</dcterms:title>
    <dcterms:abstract xml:lang="eng">Coarse-grained (CG) simulation models have become very popular tools to study complex molecular systems with great computational efficiency on length and time scales that are inaccessible to simulations at atomistic resolution. In so-called bottom-up coarse-graining strategies, the interactions in the CG model are devised such that an accurate representation of an atomistic sampling of configurational phase space is achieved. This means the coarse-graining methods use the underlying multibody potential of mean force (i.e., free-energy surface) derived from the atomistic simulation as parametrization target. Here, we present a new method where a neural network (NN) is used to extract high-dimensional free energy surfaces (FES) from molecular dynamics (MD) simulation trajectories. These FES are used for simulations on a CG level of resolution. The method is applied to simulating homo-oligo-peptides (oligo-glutamic-acid (oligo-glu) and oligo-aspartic-acid (oligo-asp)) of different lengths. We show that the NN not only is able to correctly describe the free-energy surface for oligomer lengths that it was trained on but also is able to predict the conformational sampling of longer chains.</dcterms:abstract>
    <dc:language>eng</dc:language>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-01-23T08:10:14Z</dcterms:available>
    <dc:contributor>Lemke, Tobias</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-01-23T08:10:14Z</dc:date>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/29"/>
    <dcterms:issued>2017-12-12</dcterms:issued>
    <dc:creator>Peter, Christine</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen