Publikation: Minimal Supersolutions of Convex BSDEs under Constraints
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
We study supersolutions of a backward stochastic differential equation, the control processes of which are constrained to be continuous semimartingales of the form dZ=Δdt+ΓdW. The generator may depend on the decomposition (Δ,Γ) and is assumed to be positive, jointly convex and lower semicontinuous, and to satisfy a superquadratic growth condition in Δ and Γ. We prove the existence of a supersolution that is minimal at time zero and derive stability properties of the non-linear operator that maps terminal conditions to the time zero value of this minimal supersolution such as monotone convergence, Fatou's lemma and L1-lower semicontinuity. Furthermore, we provide duality results within the present framework and thereby give conditions for the existence of solutions under constraints.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
HEYNE, Gregor, Michael KUPPER, Christoph MAINBERGER, Ludovic TANGPI, 2013. Minimal Supersolutions of Convex BSDEs under ConstraintsBibTex
@unpublished{Heyne2013Minim-26410, year={2013}, title={Minimal Supersolutions of Convex BSDEs under Constraints}, author={Heyne, Gregor and Kupper, Michael and Mainberger, Christoph and Tangpi, Ludovic} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/26410"> <dc:contributor>Tangpi, Ludovic</dc:contributor> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dcterms:issued>2013</dcterms:issued> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:contributor>Kupper, Michael</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-02-24T10:33:46Z</dc:date> <dc:creator>Heyne, Gregor</dc:creator> <dc:creator>Tangpi, Ludovic</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-02-24T10:33:46Z</dcterms:available> <dc:creator>Kupper, Michael</dc:creator> <dc:contributor>Mainberger, Christoph</dc:contributor> <dcterms:abstract xml:lang="eng">We study supersolutions of a backward stochastic differential equation, the control processes of which are constrained to be continuous semimartingales of the form dZ=Δdt+ΓdW. The generator may depend on the decomposition (Δ,Γ) and is assumed to be positive, jointly convex and lower semicontinuous, and to satisfy a superquadratic growth condition in Δ and Γ. We prove the existence of a supersolution that is minimal at time zero and derive stability properties of the non-linear operator that maps terminal conditions to the time zero value of this minimal supersolution such as monotone convergence, Fatou's lemma and L<sup>1</sup>-lower semicontinuity. Furthermore, we provide duality results within the present framework and thereby give conditions for the existence of solutions under constraints.</dcterms:abstract> <dc:creator>Mainberger, Christoph</dc:creator> <dcterms:title>Minimal Supersolutions of Convex BSDEs under Constraints</dcterms:title> <dc:contributor>Heyne, Gregor</dc:contributor> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/26410"/> <dc:language>eng</dc:language> <dc:rights>terms-of-use</dc:rights> </rdf:Description> </rdf:RDF>