Publikation:

Minimal Supersolutions of Convex BSDEs under Constraints

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2013

Autor:innen

Heyne, Gregor
Mainberger, Christoph

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

DOI (zitierfähiger Link)

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Preprint
Publikationsstatus
Published

Erschienen in

Zusammenfassung

We study supersolutions of a backward stochastic differential equation, the control processes of which are constrained to be continuous semimartingales of the form dZ=Δdt+ΓdW. The generator may depend on the decomposition (Δ,Γ) and is assumed to be positive, jointly convex and lower semicontinuous, and to satisfy a superquadratic growth condition in Δ and Γ. We prove the existence of a supersolution that is minimal at time zero and derive stability properties of the non-linear operator that maps terminal conditions to the time zero value of this minimal supersolution such as monotone convergence, Fatou's lemma and L1-lower semicontinuity. Furthermore, we provide duality results within the present framework and thereby give conditions for the existence of solutions under constraints.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690HEYNE, Gregor, Michael KUPPER, Christoph MAINBERGER, Ludovic TANGPI, 2013. Minimal Supersolutions of Convex BSDEs under Constraints
BibTex
@unpublished{Heyne2013Minim-26410,
  year={2013},
  title={Minimal Supersolutions of Convex BSDEs under Constraints},
  author={Heyne, Gregor and Kupper, Michael and Mainberger, Christoph and Tangpi, Ludovic}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/26410">
    <dc:contributor>Tangpi, Ludovic</dc:contributor>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:issued>2013</dcterms:issued>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:contributor>Kupper, Michael</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-02-24T10:33:46Z</dc:date>
    <dc:creator>Heyne, Gregor</dc:creator>
    <dc:creator>Tangpi, Ludovic</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-02-24T10:33:46Z</dcterms:available>
    <dc:creator>Kupper, Michael</dc:creator>
    <dc:contributor>Mainberger, Christoph</dc:contributor>
    <dcterms:abstract xml:lang="eng">We study supersolutions of a backward stochastic differential equation, the control processes of which are constrained to be continuous semimartingales of the form dZ=Δdt+ΓdW. The generator may depend on the decomposition (Δ,Γ) and is assumed to be positive, jointly convex and lower semicontinuous, and to satisfy a superquadratic growth condition in Δ and Γ. We prove the existence of a supersolution that is minimal at time zero and derive stability properties of the non-linear operator that maps terminal conditions to the time zero value of this minimal supersolution such as monotone convergence, Fatou's lemma and L&lt;sup&gt;1&lt;/sup&gt;-lower semicontinuity. Furthermore, we provide duality results within the present framework and thereby give conditions for the existence of solutions under constraints.</dcterms:abstract>
    <dc:creator>Mainberger, Christoph</dc:creator>
    <dcterms:title>Minimal Supersolutions of Convex BSDEs under Constraints</dcterms:title>
    <dc:contributor>Heyne, Gregor</dc:contributor>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/26410"/>
    <dc:language>eng</dc:language>
    <dc:rights>terms-of-use</dc:rights>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen