Cellular Functions and Dynamics of Reggie Proteins

Loading...
Thumbnail Image
Date
2006
Authors
Langhorst, Matthias F.
Editors
Contact
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
DOI (citable link)
ArXiv-ID
International patent number
Link to the license
EU project number
Project
Open Access publication
Collections
Restricted until
Title in another language
Zelluläre Funktion und Dynamik der Reggie-Proteine
Research Projects
Organizational Units
Journal Issue
Publication type
Dissertation
Publication status
Published in
Abstract
The reggies/flotillins are two proteins of 47 kDa, which are associated with the detergent-resistant membrane fraction. They are evolutionarily highly conserved and expressed in most tissues, with particularly high expression in the developing and regenerating nervous system. The reggies localize predominantly to the plasma membrane, where they form clusters of
50 100 nm formed by homo- and hetero-oligomerization. These clusters scaffold specific membrane microdomains and facilitate the regulated assembly of multiprotein complexes.
In this study, the cellular dynamics and functions of the reggies in neurons and lymphocytes were investigated. Analysis of the biosynthetic pathways of the reggies showed vesicular, Golgi- and microtubule-dependent trafficking of the reggies. At the plasma membrane, rapid vesicular cycling was observed by TIRF microscopy, which could be stimulated by serum and protein phosphatase inhibitors. During docking, reggie-fluorescence did not diffuse into the adjacent plasma membrane, suggesting that the reggies are trafficked as stable entities. In FRAP experiments, reggie-1 proved to be highly mobile at the bulk plasma membrane in both neurons and lymphocytes. But at the basis of membrane protrusions in PC12 cells and within the polarized accumulation in a preformed cap in lymphocytes, reggie-1 was largely immobilized. Immobilization at these specific structures and lateral mobility of reggie-1 in general was shown to be regulated by the SPFH domain. This domain interacted with the actin cytoskeleton both in vitro and in vivo. Interestingly, vesicular docking at the plasma membrane was also dependent on the SPFH domain. Thus, both vesicular and lateral dynamics of the reggies can be tightly regulated for the formation of stable reggie microdomains at specific sites of the cell.
The results of this study show that reggie microdomains are of particular importance for signalling complexes regulating the remodelling of the actin cytoskeleton. Expression of a trans-negative reggie-1 deletion mutant, which interferes with oligomerization of the endogenous reggies, selectively inhibits cytoskeleton remodelling, both in lymphocytes and in neurons. In lymphocytes, the inhibition of actin remodelling impaired the formation of a stable signalling macrodomain after activation. In neurons, differentiation and neurite outgrowth were impaired, both in neuroblastoma cells and in primary neurons. The massive defects in actin cytoskeleton remodelling were caused by an impaired Rho-GTPase signalling. In lymphocytes, the guanine-nucleotide exchange factor Vav did not localize to sites of active actin remodelling in cells expressing the trans-negative reggie-1 mutant. In neurons, the recruitment of the adaptor protein CAP/ponsin, which in turn interacts with several Rho-GTPase regulators, to the plasma membrane failed upon expression of the trans-negative mutant. Thus, microdomains scaffolded by oligomeric reggie clusters are platforms for the assembly of Rho-GTPase signalling complexes and are thus crucial for cytoskeletal remodelling. This function of the reggies is in excellent agreement with their discovery as proteins upregulated during axon regeneration.
Thus, this study expanded the view on reggie localization from static subcellular distributions to a dynamic, regulated equilibrium of vesicular pathways and lateral mobility in the plasma membrane. The formation of remarkably stable microdomains at specific sites of the cell, which are important regulators of the actin cytoskeleton, was shown to be the most prominent function of the reggies in neurons and lymphocytes.
Summary in another language
Die Reggies/Flotillins sind zwei 47 kDa Proteine, die mit der Detergenz-unlöslichen Membranfraktion assoziiert sind. Sie sind evolutionär hoch konserviert und werden in den allermeisten Geweben exprimiert, wobei eine besonders hohe Expression im sich entwickelnden und im regenerierenden Nervensystem zu beobachten ist. Die Reggies sind hauptsächlich an der Plasmamembran lokalisiert, wo sie durch homo- und hetero-Oligomerisierung Cluster mit 50 100 nm Durchmesser bilden. Diese Cluster dienen als Stützgerüst spezieller Membran-Mikrodomänen und erleichtern den regulierten Aufbau von Multi-Protein-Komplexen.
In dieser Arbeit wurden die zellulären Funktionen und die zelluläre Dynamik der Reggies untersucht, v.a. in Neuronen und Lymphozyten. Die Analyse der biosynthetischen Wege der Reggies zeigte, dass die Reggies vesikulär transportiert werden, wobei sie den Golgi passieren und der Vesikelverkehr Mikrotubuli-abhängig ist. An der Plasmamembran konnte mittels TIRF Mikroskopie gezeigt werden, dass die Reggies periodische Zyklen schneller Bewegung nahe der Plasmamembran, stationären Andockens an die Plasmamembran und schnellen Transportes zurück ins Cytosol durchlaufen. Dies konnte durch Serum und Protein-Phosphatase-Inhibitoren stimuliert werden. Während der Phasen stabilen Andockens an die Plasmamembran diffundierte die Reggie-Fluoreszenz nicht in die benachbarten Membranbereiche, was den Schluss nahe legt, dass die Reggies als stabile oligomere Cluster transportiert werden. FRAP-Experimente zeigten weiterhin, dass Reggie-1 in den meisten Bereichen der Plasmamembran von Lymphozyten und Neuronen hochgradig mobil ist. Jedoch waren die Reggies an der Basis von neugeformten Membranfortsätzen in Neuronen und im Bereich der polarisierten Akkumulation in einem vorgeformten Cap in Lymphozyten weitgehend immobilisiert. Diese Stabilisierung und die laterale Beweglichkeit von Reggie-1 im allgemeinen wurde durch die SPFH-Domäne des Proteins reguliert. Diese Domäne interagierte sowohl in vitro als auch in vivo mit Actin. Auch das Andocken von Vesikeln an die Plasmamembran wurde interessanterweise durch die SPFH-Domäne reguliert. Also können sowohl der vesikuläre Transport als auch die laterale Mobilität der Reggies reguliert werden, so dass in bestimmten Bereichen der Zelle stabile Reggie-Mikrodomänen gebildet werden.
Weiterhin zeigten die Ergebnisse dieser Arbeit, dass die Reggie-Mikrodomänen vor allem für Signaltransduktionskomplexe, die die Dynamik des Zytoskeletts regulieren, essentiell sind. Ein trans-negatives Deletionskonstrukt, das die Oligomerisierung der endogenen Reggies beeinträchtigt, inhibierte sowohl in Lymphozyten als auch in Neuronen spezifisch nur die Dynamik des Zytoskeletts. In Lymphozyten wurde so der Aufbau einer stabilen Signaltransduktions-Domäne verhindert. In Neuronen waren Differenzierung und Neuritenwachstum sowohl in Neuroblastom-Zellen als auch in primären Neuronen stark beeinträchtigt. Die ausgeprägten Defekte in der Dynamik des Actin-Zytoskeletts wurde durch eine gestörte Signaltransduktion über Rho-GTPasen hervorgerufen. In Lymphozyten war die korrekte Lokalisation des Guanin-Nukleotid-Austausch-Faktors Vav durch die Expression des trans-negativen Reggie-1 Deletionskonstruktes gestört. In Neuronen wurde die Membran-Assoziation des Adapter-Proteins CAP/ponsin beeinträchtigt. CAP/ponsin interagiert wiederum mit verschiedenen Regulatoren der Signaltransduktion über Rho-GTPasen. Zusammenfassend sind Reggie-Mikrodomänen also essentiell für den geordneten Aufbau von Multi-Protein-Komplexen, die die Signaltransduktion über Rho-GTPasen steuern, und damit für die Regulation der zellulären Zytoskelett-Dynamik. Diese Funktion der Reggies korreliert ausgezeichnet mit ihrer Entdeckung als Proteine, die während der Axon-Regeneration vermehrt exprimiert werden.
Insgesamt erweitern die Ergebnisse dieser Arbeit unsere Sicht auf die subzelluläre Lokalisation der Reggies von einer statischen Verteilung auf verschiedene Kompartimente hin zu einem dynamischen, regulierten Gleichgewicht von vesikulärem Transport und lateraler Mobilität in der Plasmamembran. Die Bildung ausgesprochen stabiler Mikrodomänen an bestimmten Stellen der Zelle, die für die Regulation der Dynamik des Zytoskeletts essentiell sind, konnte als eine herausragende Funktion der Reggies in Neuronen und Lymphozyten etabliert werden.
Subject (DDC)
570 Biosciences, Biology
Keywords
Aktin Zytoskelett,Membranmikrodomänen,membrane microdomains,scaffolding proteins,actin cytoskeleton,reggie/flotillin
Conference
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690LANGHORST, Matthias F., 2006. Cellular Functions and Dynamics of Reggie Proteins [Dissertation]. Konstanz: University of Konstanz
BibTex
@phdthesis{Langhorst2006Cellu-8837,
  year={2006},
  title={Cellular Functions and Dynamics of Reggie Proteins},
  author={Langhorst, Matthias F.},
  address={Konstanz},
  school={Universität Konstanz}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/8837">
    <dc:contributor>Langhorst, Matthias F.</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:language>eng</dc:language>
    <dcterms:abstract xml:lang="eng">The reggies/flotillins are two proteins of 47 kDa, which are associated with the detergent-resistant membrane fraction. They are evolutionarily highly conserved and expressed in most tissues, with particularly high expression in the developing and regenerating nervous system. The reggies localize predominantly to the plasma membrane, where they form clusters of&lt;br /&gt;50   100 nm formed by homo- and hetero-oligomerization. These clusters scaffold specific membrane microdomains and facilitate the regulated assembly of multiprotein complexes.&lt;br /&gt;In this study, the cellular dynamics and functions of the reggies in neurons and lymphocytes were investigated. Analysis of the biosynthetic pathways of the reggies showed vesicular, Golgi- and microtubule-dependent trafficking of the reggies. At the plasma membrane, rapid vesicular cycling was observed by TIRF microscopy, which could be stimulated by serum and protein phosphatase inhibitors. During docking, reggie-fluorescence did not diffuse into the adjacent plasma membrane, suggesting that the reggies are trafficked as stable entities. In FRAP experiments, reggie-1 proved to be highly mobile at the bulk plasma membrane in both neurons and lymphocytes. But at the basis of membrane protrusions in PC12 cells and within the polarized accumulation in a preformed cap in lymphocytes, reggie-1 was largely immobilized. Immobilization at these specific structures and lateral mobility of reggie-1 in general was shown to be regulated by the SPFH domain. This domain interacted with the actin cytoskeleton both in vitro and in vivo. Interestingly, vesicular docking at the plasma membrane was also dependent on the SPFH domain. Thus, both vesicular and lateral dynamics of the reggies can be tightly regulated for the formation of stable reggie microdomains at specific sites of the cell.&lt;br /&gt;The results of this study show that reggie microdomains are of particular importance for signalling complexes regulating the remodelling of the actin cytoskeleton. Expression of a trans-negative reggie-1 deletion mutant, which interferes with oligomerization of the endogenous reggies, selectively inhibits cytoskeleton remodelling, both in lymphocytes and in neurons. In lymphocytes, the inhibition of actin remodelling impaired the formation of a stable signalling macrodomain after activation. In neurons, differentiation and neurite outgrowth were impaired, both in neuroblastoma cells and in primary neurons. The massive defects in actin cytoskeleton remodelling were caused by an impaired Rho-GTPase signalling. In lymphocytes, the guanine-nucleotide exchange factor Vav did not localize to sites of active actin remodelling in cells expressing the trans-negative reggie-1 mutant. In neurons, the recruitment of the adaptor protein CAP/ponsin, which in turn interacts with several Rho-GTPase regulators, to the plasma membrane failed upon expression of the trans-negative mutant. Thus, microdomains scaffolded by oligomeric reggie clusters are platforms for the assembly of Rho-GTPase signalling complexes and are thus crucial for cytoskeletal remodelling. This function of the reggies is in excellent agreement with their discovery as proteins upregulated during axon regeneration.&lt;br /&gt;Thus, this study expanded the view on reggie localization from static subcellular distributions to a dynamic, regulated equilibrium of vesicular pathways and lateral mobility in the plasma membrane. The formation of remarkably stable microdomains at specific sites of the cell, which are important regulators of the actin cytoskeleton, was shown to be the most prominent function of the reggies in neurons and lymphocytes.</dcterms:abstract>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/8837/1/Diss_Langhorst.pdf"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T17:47:13Z</dcterms:available>
    <dc:creator>Langhorst, Matthias F.</dc:creator>
    <dcterms:alternative>Zelluläre Funktion und Dynamik der Reggie-Proteine</dcterms:alternative>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dc:format>application/pdf</dc:format>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/8837/1/Diss_Langhorst.pdf"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T17:47:13Z</dc:date>
    <dcterms:title>Cellular Functions and Dynamics of Reggie Proteins</dcterms:title>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/8837"/>
    <dcterms:issued>2006</dcterms:issued>
  </rdf:Description>
</rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Contact
URL of original publication
Test date of URL
Examination date of dissertation
November 17, 2006
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
Refereed