Publikation:

Correction of susceptibility artifacts in diffusion tensor data using non-linear registration

Lade...
Vorschaubild

Dateien

correction_of_susceptibility_2007.pdf
correction_of_susceptibility_2007.pdfGröße: 1.61 MBDownloads: 591

Datum

2007

Autor:innen

Soza, Grzegorz
Stadlbauer, Andreas
Greiner, Günther
Nimsky, Christopher

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Medical Image Analysis. 2007, 11(6), pp. 588-603. Available under: doi: 10.1016/j.media.2007.05.004

Zusammenfassung

Diffusion tensor imaging can be used to localize major white matter tracts within the human brain. For surgery of tumors near eloquent brain areas such as the pyramidal tract this information is of importance to achieve an optimal resection while avoiding post-operative neurological deficits. However, due to the small bandwidth of echo planar imaging, diffusion tensor images suffer from susceptibility artifacts resulting in positional shifts and distortion. As a consequence, the fiber tracts computed from echo planar imaging data are spatially distorted. We present an approach based on non-linear registration using B´ezier functions to efficiently correct distortions due to susceptibility artifacts. The approach makes extensive use of graphics hardware to accelerate the non-linear registration procedure. An improvement presented in this paper is a more robust and efficient optimization strategy based on simultaneous perturbation stochastic approximation (SPSA). Since the accuracy of non-linear registration is crucial for the value of the presented correction method, two techniques were applied in order to prove the quality of the proposed framework. First, the registration accuracy was evaluated by recovering a known transformation with non-linear registration. Second, landmark-based evaluation of the registration method for anatomical and diffusion tensor data was performed. The registration was then applied to patients with lesions adjacent to the pyramidal tract in order to compensate for susceptibility artifacts. The effect of the correction on the pyramidal tract was then quantified by measuring the position of the tract before and after registration. As a result, the distortions observed in phase encoding direction were most prominent at the cortex and the brainstem. The presented approach allows correcting fiber tract distortions which is an important prerequisite when tractography data are integrated into a stereotactic setup for intra-operative guidance.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

non-linear registration, graphics hardware, neuro-navigation, susceptibility artifacts, diffusion tensor imaging

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690MERHOF, Dorit, Grzegorz SOZA, Andreas STADLBAUER, Günther GREINER, Christopher NIMSKY, 2007. Correction of susceptibility artifacts in diffusion tensor data using non-linear registration. In: Medical Image Analysis. 2007, 11(6), pp. 588-603. Available under: doi: 10.1016/j.media.2007.05.004
BibTex
@article{Merhof2007Corre-5933,
  year={2007},
  doi={10.1016/j.media.2007.05.004},
  title={Correction of susceptibility artifacts in diffusion tensor data using non-linear registration},
  number={6},
  volume={11},
  journal={Medical Image Analysis},
  pages={588--603},
  author={Merhof, Dorit and Soza, Grzegorz and Stadlbauer, Andreas and Greiner, Günther and Nimsky, Christopher}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/5933">
    <dcterms:title>Correction of susceptibility artifacts in diffusion tensor data using non-linear registration</dcterms:title>
    <dc:contributor>Stadlbauer, Andreas</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T16:01:28Z</dcterms:available>
    <dcterms:bibliographicCitation>First publ. in: Medical Image Analysis 11 (2007), 6, pp. 588-603</dcterms:bibliographicCitation>
    <dc:contributor>Greiner, Günther</dc:contributor>
    <dc:creator>Merhof, Dorit</dc:creator>
    <dc:creator>Nimsky, Christopher</dc:creator>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/5933"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T16:01:28Z</dc:date>
    <dc:contributor>Soza, Grzegorz</dc:contributor>
    <dc:creator>Greiner, Günther</dc:creator>
    <dc:creator>Stadlbauer, Andreas</dc:creator>
    <dc:rights>terms-of-use</dc:rights>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5933/1/correction_of_susceptibility_2007.pdf"/>
    <dc:contributor>Merhof, Dorit</dc:contributor>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5933/1/correction_of_susceptibility_2007.pdf"/>
    <dc:contributor>Nimsky, Christopher</dc:contributor>
    <dcterms:abstract xml:lang="eng">Diffusion tensor imaging can be used to localize major white matter tracts within the human brain. For surgery of tumors near eloquent brain areas such as the pyramidal tract this information is of importance to achieve an optimal resection while avoiding post-operative neurological deficits. However, due to the small bandwidth of echo planar imaging, diffusion tensor images suffer from susceptibility artifacts resulting in positional shifts and distortion. As a consequence, the fiber tracts computed from echo planar imaging data are spatially distorted. We present an approach based on non-linear registration using B´ezier functions to efficiently correct distortions due to susceptibility artifacts. The approach makes extensive use of graphics hardware to accelerate the non-linear registration procedure. An improvement presented in this paper is a more robust and efficient optimization strategy based on simultaneous perturbation stochastic approximation (SPSA). Since the accuracy of non-linear registration is crucial for the value of the presented correction method, two techniques were applied in order to prove the quality of the proposed framework. First, the registration accuracy was evaluated by recovering a known transformation with non-linear registration. Second, landmark-based evaluation of the registration method for anatomical and diffusion tensor data was performed. The registration was then applied to patients with lesions adjacent to the pyramidal tract in order to compensate for susceptibility artifacts. The effect of the correction on the pyramidal tract was then quantified by measuring the position of the tract before and after registration. As a result, the distortions observed in phase encoding direction were most prominent at the cortex and the brainstem. The presented approach allows correcting fiber tract distortions which is an important prerequisite when tractography data are integrated into a stereotactic setup for intra-operative guidance.</dcterms:abstract>
    <dc:language>eng</dc:language>
    <dc:creator>Soza, Grzegorz</dc:creator>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:format>application/pdf</dc:format>
    <dcterms:issued>2007</dcterms:issued>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Diese Publikation teilen