Correction of susceptibility artifacts in diffusion tensor data using non-linear registration

Lade...
Vorschaubild
Dateien
correction_of_susceptibility_2007.pdf
correction_of_susceptibility_2007.pdfGröße: 1.61 MBDownloads: 514
Datum
2007
Autor:innen
Soza, Grzegorz
Stadlbauer, Andreas
Greiner, Günther
Nimsky, Christopher
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Medical Image Analysis. 2007, 11(6), pp. 588-603. Available under: doi: 10.1016/j.media.2007.05.004
Zusammenfassung

Diffusion tensor imaging can be used to localize major white matter tracts within the human brain. For surgery of tumors near eloquent brain areas such as the pyramidal tract this information is of importance to achieve an optimal resection while avoiding post-operative neurological deficits. However, due to the small bandwidth of echo planar imaging, diffusion tensor images suffer from susceptibility artifacts resulting in positional shifts and distortion. As a consequence, the fiber tracts computed from echo planar imaging data are spatially distorted. We present an approach based on non-linear registration using B´ezier functions to efficiently correct distortions due to susceptibility artifacts. The approach makes extensive use of graphics hardware to accelerate the non-linear registration procedure. An improvement presented in this paper is a more robust and efficient optimization strategy based on simultaneous perturbation stochastic approximation (SPSA). Since the accuracy of non-linear registration is crucial for the value of the presented correction method, two techniques were applied in order to prove the quality of the proposed framework. First, the registration accuracy was evaluated by recovering a known transformation with non-linear registration. Second, landmark-based evaluation of the registration method for anatomical and diffusion tensor data was performed. The registration was then applied to patients with lesions adjacent to the pyramidal tract in order to compensate for susceptibility artifacts. The effect of the correction on the pyramidal tract was then quantified by measuring the position of the tract before and after registration. As a result, the distortions observed in phase encoding direction were most prominent at the cortex and the brainstem. The presented approach allows correcting fiber tract distortions which is an important prerequisite when tractography data are integrated into a stereotactic setup for intra-operative guidance.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
non-linear registration, graphics hardware, neuro-navigation, susceptibility artifacts, diffusion tensor imaging
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690MERHOF, Dorit, Grzegorz SOZA, Andreas STADLBAUER, Günther GREINER, Christopher NIMSKY, 2007. Correction of susceptibility artifacts in diffusion tensor data using non-linear registration. In: Medical Image Analysis. 2007, 11(6), pp. 588-603. Available under: doi: 10.1016/j.media.2007.05.004
BibTex
@article{Merhof2007Corre-5933,
  year={2007},
  doi={10.1016/j.media.2007.05.004},
  title={Correction of susceptibility artifacts in diffusion tensor data using non-linear registration},
  number={6},
  volume={11},
  journal={Medical Image Analysis},
  pages={588--603},
  author={Merhof, Dorit and Soza, Grzegorz and Stadlbauer, Andreas and Greiner, Günther and Nimsky, Christopher}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/5933">
    <dcterms:title>Correction of susceptibility artifacts in diffusion tensor data using non-linear registration</dcterms:title>
    <dc:contributor>Stadlbauer, Andreas</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T16:01:28Z</dcterms:available>
    <dcterms:bibliographicCitation>First publ. in: Medical Image Analysis 11 (2007), 6, pp. 588-603</dcterms:bibliographicCitation>
    <dc:contributor>Greiner, Günther</dc:contributor>
    <dc:creator>Merhof, Dorit</dc:creator>
    <dc:creator>Nimsky, Christopher</dc:creator>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/5933"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T16:01:28Z</dc:date>
    <dc:contributor>Soza, Grzegorz</dc:contributor>
    <dc:creator>Greiner, Günther</dc:creator>
    <dc:creator>Stadlbauer, Andreas</dc:creator>
    <dc:rights>terms-of-use</dc:rights>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5933/1/correction_of_susceptibility_2007.pdf"/>
    <dc:contributor>Merhof, Dorit</dc:contributor>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5933/1/correction_of_susceptibility_2007.pdf"/>
    <dc:contributor>Nimsky, Christopher</dc:contributor>
    <dcterms:abstract xml:lang="eng">Diffusion tensor imaging can be used to localize major white matter tracts within the human brain. For surgery of tumors near eloquent brain areas such as the pyramidal tract this information is of importance to achieve an optimal resection while avoiding post-operative neurological deficits. However, due to the small bandwidth of echo planar imaging, diffusion tensor images suffer from susceptibility artifacts resulting in positional shifts and distortion. As a consequence, the fiber tracts computed from echo planar imaging data are spatially distorted. We present an approach based on non-linear registration using B´ezier functions to efficiently correct distortions due to susceptibility artifacts. The approach makes extensive use of graphics hardware to accelerate the non-linear registration procedure. An improvement presented in this paper is a more robust and efficient optimization strategy based on simultaneous perturbation stochastic approximation (SPSA). Since the accuracy of non-linear registration is crucial for the value of the presented correction method, two techniques were applied in order to prove the quality of the proposed framework. First, the registration accuracy was evaluated by recovering a known transformation with non-linear registration. Second, landmark-based evaluation of the registration method for anatomical and diffusion tensor data was performed. The registration was then applied to patients with lesions adjacent to the pyramidal tract in order to compensate for susceptibility artifacts. The effect of the correction on the pyramidal tract was then quantified by measuring the position of the tract before and after registration. As a result, the distortions observed in phase encoding direction were most prominent at the cortex and the brainstem. The presented approach allows correcting fiber tract distortions which is an important prerequisite when tractography data are integrated into a stereotactic setup for intra-operative guidance.</dcterms:abstract>
    <dc:language>eng</dc:language>
    <dc:creator>Soza, Grzegorz</dc:creator>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:format>application/pdf</dc:format>
    <dcterms:issued>2007</dcterms:issued>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Diese Publikation teilen