Publikation:

Deep learning‐based methods for individual recognition in small birds

Lade...
Vorschaubild

Dateien

Ferreira_2-112ukl12rdlsg8.pdf
Ferreira_2-112ukl12rdlsg8.pdfGröße: 1.73 MBDownloads: 237

Datum

2020

Autor:innen

Ferreira, André C.
Silva, Liliana R.
Renna, Francesco
Renoult, Julien P.
Covas, Rita
Doutrelant, Claire

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Link zur Lizenz

Angaben zur Forschungsförderung

European Union (EU): 850859

Projekt

Open Access-Veröffentlichung
Open Access Hybrid
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Methods in Ecology and Evolution. Wiley. 2020, 11(9), pp. 1072-1085. ISSN 2041-2096. eISSN 2041-210X. Available under: doi: 10.1111/2041-210X.13436

Zusammenfassung

  1. Deep learning‐based methods for individual recognition in small birds1.Individual identification is a crucial step to answer many questions in evolutionary biology and is mostly performed by marking animals with tags. Such methods are well‐established, but often make data collection and analyses time‐consuming, or limit the contexts in which data can be collected.

    2.Recent computational advances, specifically deep learning, can help overcome the limitations of collecting large‐scale data across contexts. However, one of the bottlenecks preventing the application of deep learning for individual identification is the need to collect and identify hundreds to thousands of individually labelled pictures to train convolutional neural networks (CNNs).

    3.Here we describe procedures for automating the collection of training data, generating training datasets, and training CNNs to allow identification of individual birds. We apply our procedures to three small bird species, the sociable weaver Philetairus socius, the great tit Parus major and the zebra finch Taeniopygia guttata, representing both wild and captive contexts.

    4.We first show how the collection of individually labelled images can be automated, allowing the construction of training datasets consisting of hundreds of images per individual. Second, we describe how to train a CNN to uniquely re‐identify each individual in new images. Third, we illustrate the general applicability of CNNs for studies in animal biology by showing that trained CNNs can re‐identify individual birds in images collected in contexts that differ from the ones originally used to train the CNNs. Finally, we present a potential solution to solve the issues of new incoming individuals.

    5.Overall, our work demonstrates the feasibility of applying state‐of‐the‐art deep learning tools for individual identification of birds, both in the laboratory and in the wild. These techniques are made possible by our approaches that allow efficient collection of training data. The ability to conduct individual recognition of birds without requiring external markers that can be visually identified by human observers represents a major advance over current methods.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
570 Biowissenschaften, Biologie

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690FERREIRA, André C., Liliana R. SILVA, Francesco RENNA, Hanja B. BRANDL, Julien P. RENOULT, Damien R. FARINE, Rita COVAS, Claire DOUTRELANT, 2020. Deep learning‐based methods for individual recognition in small birds. In: Methods in Ecology and Evolution. Wiley. 2020, 11(9), pp. 1072-1085. ISSN 2041-2096. eISSN 2041-210X. Available under: doi: 10.1111/2041-210X.13436
BibTex
@article{Ferreira2020learn-50104.2,
  year={2020},
  doi={10.1111/2041-210X.13436},
  title={Deep learning‐based methods for individual recognition in small birds},
  number={9},
  volume={11},
  issn={2041-2096},
  journal={Methods in Ecology and Evolution},
  pages={1072--1085},
  author={Ferreira, André C. and Silva, Liliana R. and Renna, Francesco and Brandl, Hanja B. and Renoult, Julien P. and Farine, Damien R. and Covas, Rita and Doutrelant, Claire}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/50104.2">
    <dc:creator>Renna, Francesco</dc:creator>
    <dc:creator>Farine, Damien R.</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-09-17T13:25:17Z</dc:date>
    <dc:creator>Silva, Liliana R.</dc:creator>
    <dc:language>eng</dc:language>
    <dc:contributor>Renna, Francesco</dc:contributor>
    <dc:contributor>Farine, Damien R.</dc:contributor>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/>
    <dc:contributor>Silva, Liliana R.</dc:contributor>
    <dc:contributor>Renoult, Julien P.</dc:contributor>
    <dcterms:issued>2020</dcterms:issued>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/50104.2"/>
    <dcterms:abstract xml:lang="eng">1. Deep learning‐based methods for individual recognition in small birds1.Individual identification is a crucial step to answer many questions in evolutionary biology and is mostly performed by marking animals with tags. Such methods are well‐established, but often make data collection and analyses time‐consuming, or limit the contexts in which data can be collected.&lt;br /&gt;&lt;br /&gt;2.Recent computational advances, specifically deep learning, can help overcome the limitations of collecting large‐scale data across contexts. However, one of the bottlenecks preventing the application of deep learning for individual identification is the need to collect and identify hundreds to thousands of individually labelled pictures to train convolutional neural networks (CNNs).&lt;br /&gt;&lt;br /&gt;3.Here we describe procedures for automating the collection of training data, generating training datasets, and training CNNs to allow identification of individual birds. We apply our procedures to three small bird species, the sociable weaver Philetairus socius, the great tit Parus major and the zebra finch Taeniopygia guttata, representing both wild and captive contexts.&lt;br /&gt;&lt;br /&gt;4.We first show how the collection of individually labelled images can be automated, allowing the construction of training datasets consisting of hundreds of images per individual. Second, we describe how to train a CNN to uniquely re‐identify each individual in new images. Third, we illustrate the general applicability of CNNs for studies in animal biology by showing that trained CNNs can re‐identify individual birds in images collected in contexts that differ from the ones originally used to train the CNNs. Finally, we present a potential solution to solve the issues of new incoming individuals.&lt;br /&gt;&lt;br /&gt;5.Overall, our work demonstrates the feasibility of applying state‐of‐the‐art deep learning tools for individual identification of birds, both in the laboratory and in the wild. These techniques are made possible by our approaches that allow efficient collection of training data. The ability to conduct individual recognition of birds without requiring external markers that can be visually identified by human observers represents a major advance over current methods.</dcterms:abstract>
    <dc:creator>Ferreira, André C.</dc:creator>
    <dc:creator>Doutrelant, Claire</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dc:rights>Attribution 4.0 International</dc:rights>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/50104.2/1/Ferreira_2-112ukl12rdlsg8.pdf"/>
    <dc:contributor>Brandl, Hanja B.</dc:contributor>
    <dc:contributor>Covas, Rita</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dc:creator>Covas, Rita</dc:creator>
    <dc:contributor>Doutrelant, Claire</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43615"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43615"/>
    <dc:creator>Brandl, Hanja B.</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/50104.2/1/Ferreira_2-112ukl12rdlsg8.pdf"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Ferreira, André C.</dc:contributor>
    <dcterms:title>Deep learning‐based methods for individual recognition in small birds</dcterms:title>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-09-17T13:25:17Z</dcterms:available>
    <dc:creator>Renoult, Julien P.</dc:creator>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen

Versionsgeschichte

Gerade angezeigt 1 - 2 von 2
VersionDatumZusammenfassung
2*
2020-09-17 13:21:06
2020-07-02 12:08:05
* Ausgewählte Version