Publikation: Shape Analysis of DNA–Au Hybrid Particles by Analytical Ultracentrifugation
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Current developments in nanotechnology have increased the demand for nanocrystal assemblies with well-defined shapes and tunable sizes. DNA is a particularly well-suited building block in nanoscale assemblies because of its scalable sizes, conformational variability, and convenient self-assembly capabilities via base pairing. In hybrid materials, gold nanoparticles (AuNPs) can be assembled into nanoparticle structures with programmable interparticle distances by applying appropriate DNA sequences. However, the development of stoichiometrically defined DNA/NP structures is still challenging since product mixtures are frequently obtained and their purification and characterization is the rate-limiting step in the development of DNA-NP hybrid assemblies. Improvements in nanostructure fractionation and characterization techniques offer great potential for nanotechnology applications in general. This study reports the application of analytical ultracentrifugation (AUC) for the characterization of anisotropic DNA-linked metal-crystal assemblies. On the basis of transmission electron microscopy data and the DNA primary sequence, hydrodynamic bead models are set up for the interpretation of the measured frictional ratios and sedimentation coefficients. We demonstrate that the presence of single DNA strands on particle surfaces as well as the shape factors of multiparticle structures in mixtures can be quantitatively described by AUC. This study will significantly broaden the possibilities to analyze mixtures of shape-anisotropic nanoparticle assemblies. By establishing insights into the analysis of nanostructure mixtures based on fundamental principles of sedimentation, a wide range of potential applications in basic research and industry become accessible.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
URBAN, Maximilan J., Isabelle T. HOLDER, Marius SCHMID, Vanesa FERNANDEZ ESPIN, Jose GARCIA DE LA TORRE, Jörg S. HARTIG, Helmut CÖLFEN, 2016. Shape Analysis of DNA–Au Hybrid Particles by Analytical Ultracentrifugation. In: ACS Nano. 2016, 10(8), pp. 7418-7427. ISSN 1936-0851. eISSN 1936-086X. Available under: doi: 10.1021/acsnano.6b01377BibTex
@article{Urban2016-08-23Shape-35809, year={2016}, doi={10.1021/acsnano.6b01377}, title={Shape Analysis of DNA–Au Hybrid Particles by Analytical Ultracentrifugation}, number={8}, volume={10}, issn={1936-0851}, journal={ACS Nano}, pages={7418--7427}, author={Urban, Maximilan J. and Holder, Isabelle T. and Schmid, Marius and Fernandez Espin, Vanesa and Garcia de la Torre, Jose and Hartig, Jörg S. and Cölfen, Helmut} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/35809"> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-11-02T10:37:23Z</dcterms:available> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/29"/> <dcterms:title>Shape Analysis of DNA–Au Hybrid Particles by Analytical Ultracentrifugation</dcterms:title> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:contributor>Urban, Maximilan J.</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-11-02T10:37:23Z</dc:date> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/29"/> <dc:creator>Schmid, Marius</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:language>eng</dc:language> <dc:creator>Urban, Maximilan J.</dc:creator> <dc:contributor>Cölfen, Helmut</dc:contributor> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/35809"/> <dc:creator>Cölfen, Helmut</dc:creator> <dc:contributor>Holder, Isabelle T.</dc:contributor> <dc:contributor>Fernandez Espin, Vanesa</dc:contributor> <dc:contributor>Garcia de la Torre, Jose</dc:contributor> <dc:contributor>Schmid, Marius</dc:contributor> <dc:creator>Garcia de la Torre, Jose</dc:creator> <dc:creator>Holder, Isabelle T.</dc:creator> <dcterms:issued>2016-08-23</dcterms:issued> <dcterms:abstract xml:lang="eng">Current developments in nanotechnology have increased the demand for nanocrystal assemblies with well-defined shapes and tunable sizes. DNA is a particularly well-suited building block in nanoscale assemblies because of its scalable sizes, conformational variability, and convenient self-assembly capabilities via base pairing. In hybrid materials, gold nanoparticles (AuNPs) can be assembled into nanoparticle structures with programmable interparticle distances by applying appropriate DNA sequences. However, the development of stoichiometrically defined DNA/NP structures is still challenging since product mixtures are frequently obtained and their purification and characterization is the rate-limiting step in the development of DNA-NP hybrid assemblies. Improvements in nanostructure fractionation and characterization techniques offer great potential for nanotechnology applications in general. This study reports the application of analytical ultracentrifugation (AUC) for the characterization of anisotropic DNA-linked metal-crystal assemblies. On the basis of transmission electron microscopy data and the DNA primary sequence, hydrodynamic bead models are set up for the interpretation of the measured frictional ratios and sedimentation coefficients. We demonstrate that the presence of single DNA strands on particle surfaces as well as the shape factors of multiparticle structures in mixtures can be quantitatively described by AUC. This study will significantly broaden the possibilities to analyze mixtures of shape-anisotropic nanoparticle assemblies. By establishing insights into the analysis of nanostructure mixtures based on fundamental principles of sedimentation, a wide range of potential applications in basic research and industry become accessible.</dcterms:abstract> <dc:creator>Hartig, Jörg S.</dc:creator> <dc:creator>Fernandez Espin, Vanesa</dc:creator> <dc:contributor>Hartig, Jörg S.</dc:contributor> </rdf:Description> </rdf:RDF>