Publikation: A correlated traits correlated (methods – 1) multitrait‐multimethod model for augmented round‐robin data
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
We didactically derive a correlated traits correlated (methods – 1) [CTC(M – 1)] multitrait‐multimethod (MTMM) model for dyadic round‐robin data augmented by self‐reports. The model is an extension of the CTC(M – 1) model for cross‐classified data and can handle dependencies between raters and targets by including reciprocity covariance parameters that are inherent in augmented round‐robin designs. It can be specified as a traditional structural equation model. We present the variance decomposition as well as consistency and reliability coefficients. Moreover, we explain how to evaluate fit of a CTC(M – 1) model for augmented round‐robin data. In a simulation study, we explore the properties of the full information maximum likelihood estimation of the model. Model (mis)fit can be quite accurately detected with the test of not close fit and dynamic root mean square errors of approximation. Even with few small round‐robin groups, relative parameter estimation bias and coverage rates are satisfactory, but several larger round‐robin groups are needed to minimize relative parameter estimation inaccuracy. Further, neglecting the reciprocity covariance‐structure of the augmented round‐robin data does not severely bias the remaining parameter estimates. All analyses (including data, R scripts, and results) and the simulation study are provided in the Supporting Information. Implications and limitations are discussed.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
JENDRYCZKO, David, Fridtjof W. NUSSBECK, 2024. A correlated traits correlated (methods – 1) multitrait‐multimethod model for augmented round‐robin data. In: British Journal of Mathematical and Statistical Psychology. Wiley. 2024, 77(1), S. 1-30. ISSN 0007-1102. eISSN 2044-8317. Verfügbar unter: doi: 10.1111/bmsp.12324BibTex
@article{Jendryczko2024corre-68002, year={2024}, doi={10.1111/bmsp.12324}, title={A correlated traits correlated (methods – 1) multitrait‐multimethod model for augmented round‐robin data}, number={1}, volume={77}, issn={0007-1102}, journal={British Journal of Mathematical and Statistical Psychology}, pages={1--30}, author={Jendryczko, David and Nussbeck, Fridtjof W.} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/68002"> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/68002"/> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/4.0/"/> <dcterms:title>A correlated traits correlated (methods – 1) multitrait‐multimethod model for augmented round‐robin data</dcterms:title> <dcterms:abstract>We didactically derive a correlated traits correlated (methods – 1) [CTC(M – 1)] multitrait‐multimethod (MTMM) model for dyadic round‐robin data augmented by self‐reports. The model is an extension of the CTC(M – 1) model for cross‐classified data and can handle dependencies between raters and targets by including reciprocity covariance parameters that are inherent in augmented round‐robin designs. It can be specified as a traditional structural equation model. We present the variance decomposition as well as consistency and reliability coefficients. Moreover, we explain how to evaluate fit of a CTC(M – 1) model for augmented round‐robin data. In a simulation study, we explore the properties of the full information maximum likelihood estimation of the model. Model (mis)fit can be quite accurately detected with the test of not close fit and dynamic root mean square errors of approximation. Even with few small round‐robin groups, relative parameter estimation bias and coverage rates are satisfactory, but several larger round‐robin groups are needed to minimize relative parameter estimation inaccuracy. Further, neglecting the reciprocity covariance‐structure of the augmented round‐robin data does not severely bias the remaining parameter estimates. All analyses (including data, R scripts, and results) and the simulation study are provided in the Supporting Information. Implications and limitations are discussed.</dcterms:abstract> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43"/> <dc:rights>Attribution-NonCommercial-NoDerivatives 4.0 International</dc:rights> <dc:creator>Nussbeck, Fridtjof W.</dc:creator> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/68002/1/Jendryczko_2-10tctwrofvyoe1.PDF"/> <dc:creator>Jendryczko, David</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43"/> <dc:contributor>Nussbeck, Fridtjof W.</dc:contributor> <dcterms:issued>2024</dcterms:issued> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/68002/1/Jendryczko_2-10tctwrofvyoe1.PDF"/> <dc:language>eng</dc:language> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-10-27T09:15:59Z</dcterms:available> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-10-27T09:15:59Z</dc:date> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:contributor>Jendryczko, David</dc:contributor> </rdf:Description> </rdf:RDF>