Publikation:

A correlated traits correlated (methods – 1) multitrait‐multimethod model for augmented round‐robin data

Lade...
Vorschaubild

Dateien

Jendryczko_2-10tctwrofvyoe1.PDF
Jendryczko_2-10tctwrofvyoe1.PDFGröße: 1.55 MBDownloads: 19

Datum

2024

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Link zur Lizenz

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Hybrid
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

British Journal of Mathematical and Statistical Psychology. Wiley. 2024, 77(1), S. 1-30. ISSN 0007-1102. eISSN 2044-8317. Verfügbar unter: doi: 10.1111/bmsp.12324

Zusammenfassung

We didactically derive a correlated traits correlated (methods – 1) [CTC(M – 1)] multitrait‐multimethod (MTMM) model for dyadic round‐robin data augmented by self‐reports. The model is an extension of the CTC(M – 1) model for cross‐classified data and can handle dependencies between raters and targets by including reciprocity covariance parameters that are inherent in augmented round‐robin designs. It can be specified as a traditional structural equation model. We present the variance decomposition as well as consistency and reliability coefficients. Moreover, we explain how to evaluate fit of a CTC(M – 1) model for augmented round‐robin data. In a simulation study, we explore the properties of the full information maximum likelihood estimation of the model. Model (mis)fit can be quite accurately detected with the test of not close fit and dynamic root mean square errors of approximation. Even with few small round‐robin groups, relative parameter estimation bias and coverage rates are satisfactory, but several larger round‐robin groups are needed to minimize relative parameter estimation inaccuracy. Further, neglecting the reciprocity covariance‐structure of the augmented round‐robin data does not severely bias the remaining parameter estimates. All analyses (including data, R scripts, and results) and the simulation study are provided in the Supporting Information. Implications and limitations are discussed.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
150 Psychologie

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690JENDRYCZKO, David, Fridtjof W. NUSSBECK, 2024. A correlated traits correlated (methods – 1) multitrait‐multimethod model for augmented round‐robin data. In: British Journal of Mathematical and Statistical Psychology. Wiley. 2024, 77(1), S. 1-30. ISSN 0007-1102. eISSN 2044-8317. Verfügbar unter: doi: 10.1111/bmsp.12324
BibTex
@article{Jendryczko2024corre-68002,
  year={2024},
  doi={10.1111/bmsp.12324},
  title={A correlated traits correlated (methods – 1) multitrait‐multimethod model for augmented round‐robin data},
  number={1},
  volume={77},
  issn={0007-1102},
  journal={British Journal of Mathematical and Statistical Psychology},
  pages={1--30},
  author={Jendryczko, David and Nussbeck, Fridtjof W.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/68002">
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/68002"/>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/4.0/"/>
    <dcterms:title>A correlated traits correlated (methods – 1) multitrait‐multimethod model for augmented round‐robin data</dcterms:title>
    <dcterms:abstract>We didactically derive a correlated traits correlated (methods – 1) [CTC(M – 1)] multitrait‐multimethod (MTMM) model for dyadic round‐robin data augmented by self‐reports. The model is an extension of the CTC(M – 1) model for cross‐classified data and can handle dependencies between raters and targets by including reciprocity covariance parameters that are inherent in augmented round‐robin designs. It can be specified as a traditional structural equation model. We present the variance decomposition as well as consistency and reliability coefficients. Moreover, we explain how to evaluate fit of a CTC(M – 1) model for augmented round‐robin data. In a simulation study, we explore the properties of the full information maximum likelihood estimation of the model. Model (mis)fit can be quite accurately detected with the test of not close fit and dynamic root mean square errors of approximation. Even with few small round‐robin groups, relative parameter estimation bias and coverage rates are satisfactory, but several larger round‐robin groups are needed to minimize relative parameter estimation inaccuracy. Further, neglecting the reciprocity covariance‐structure of the augmented round‐robin data does not severely bias the remaining parameter estimates. All analyses (including data, R scripts, and results) and the simulation study are provided in the Supporting Information. Implications and limitations are discussed.</dcterms:abstract>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43"/>
    <dc:rights>Attribution-NonCommercial-NoDerivatives 4.0 International</dc:rights>
    <dc:creator>Nussbeck, Fridtjof W.</dc:creator>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/68002/1/Jendryczko_2-10tctwrofvyoe1.PDF"/>
    <dc:creator>Jendryczko, David</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43"/>
    <dc:contributor>Nussbeck, Fridtjof W.</dc:contributor>
    <dcterms:issued>2024</dcterms:issued>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/68002/1/Jendryczko_2-10tctwrofvyoe1.PDF"/>
    <dc:language>eng</dc:language>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-10-27T09:15:59Z</dcterms:available>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-10-27T09:15:59Z</dc:date>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Jendryczko, David</dc:contributor>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen