Publikation:

Bioinspired Chiral Template Guided Mineralization for Biophotonic Structural Materials

Lade...
Vorschaubild

Dateien

Xiong_2-10mb10w8hohri7.PDF
Xiong_2-10mb10w8hohri7.PDFGröße: 2.31 MBDownloads: 66

Datum

2022

Autor:innen

Wu, Wanlin
Lu, Canhui

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Link zur Lizenz

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Hybrid
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Advanced Materials. Wiley. 2022, 34(51), 2206509. ISSN 0935-9648. eISSN 1521-4095. Available under: doi: 10.1002/adma.202206509

Zusammenfassung

Nature provides numerous biomineral design inspirations for constructing structural materials with desired functionalities. However, large-scale production of damage-tolerant Bouligand structural materials with biologically comparable photonics remains a longstanding challenge. Here, an efficient and scalable artificial molting strategy, based on self-assembly of cellulose nanocrystals and subsequent mineralization of amorphous calcium carbonate, is developed to produce biomimetic materials with an exceptional combination of mechanical and photonic properties that are usually mutually exclusive in synthetic materials. These biomimetic composites exhibit tunable mechanics from "strong and flexible", which exceeds the benchmark of natural chiral materials, to "stiff and hard", which is comparable to natural and synthetic counterparts. Especially, the biomimetic composites possess ultrahigh stiffness of 2 GPa in their fully water-swollen state-a value well beyond hydrated crab exoskeleton, cartilage, tendon, and stiffest synthetic hydrogels, combined with exceptional strength and resilience. Additionally, these composites are distinguished by the tunable chiral structural color and water-triggered switchable photonics that are absent in most artificial mineralized materials, as well as unique hydroplastic properties. This study opens the door for a scalable synthesis of resilient biophotonic structural materials in practical bulk form.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
540 Chemie

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690XIONG, Rui, Wanlin WU, Canhui LU, Helmut CÖLFEN, 2022. Bioinspired Chiral Template Guided Mineralization for Biophotonic Structural Materials. In: Advanced Materials. Wiley. 2022, 34(51), 2206509. ISSN 0935-9648. eISSN 1521-4095. Available under: doi: 10.1002/adma.202206509
BibTex
@article{Xiong2022-10-08Bioin-59107,
  year={2022},
  doi={10.1002/adma.202206509},
  title={Bioinspired Chiral Template Guided Mineralization for Biophotonic Structural Materials},
  number={51},
  volume={34},
  issn={0935-9648},
  journal={Advanced Materials},
  author={Xiong, Rui and Wu, Wanlin and Lu, Canhui and Cölfen, Helmut},
  note={Article Number: 2206509}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/59107">
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-11-10T13:39:00Z</dcterms:available>
    <dc:creator>Lu, Canhui</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/29"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-11-10T13:39:00Z</dc:date>
    <dc:creator>Xiong, Rui</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/59107/1/Xiong_2-10mb10w8hohri7.PDF"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/59107"/>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/29"/>
    <dcterms:abstract xml:lang="eng">Nature provides numerous biomineral design inspirations for constructing structural materials with desired functionalities. However, large-scale production of damage-tolerant Bouligand structural materials with biologically comparable photonics remains a longstanding challenge. Here, an efficient and scalable artificial molting strategy, based on self-assembly of cellulose nanocrystals and subsequent mineralization of amorphous calcium carbonate, is developed to produce biomimetic materials with an exceptional combination of mechanical and photonic properties that are usually mutually exclusive in synthetic materials. These biomimetic composites exhibit tunable mechanics from "strong and flexible", which exceeds the benchmark of natural chiral materials, to "stiff and hard", which is comparable to natural and synthetic counterparts. Especially, the biomimetic composites possess ultrahigh stiffness of 2 GPa in their fully water-swollen state-a value well beyond hydrated crab exoskeleton, cartilage, tendon, and stiffest synthetic hydrogels, combined with exceptional strength and resilience. Additionally, these composites are distinguished by the tunable chiral structural color and water-triggered switchable photonics that are absent in most artificial mineralized materials, as well as unique hydroplastic properties. This study opens the door for a scalable synthesis of resilient biophotonic structural materials in practical bulk form.</dcterms:abstract>
    <dc:creator>Cölfen, Helmut</dc:creator>
    <dc:creator>Wu, Wanlin</dc:creator>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/59107/1/Xiong_2-10mb10w8hohri7.PDF"/>
    <dc:contributor>Wu, Wanlin</dc:contributor>
    <dc:contributor>Lu, Canhui</dc:contributor>
    <dc:contributor>Xiong, Rui</dc:contributor>
    <dc:contributor>Cölfen, Helmut</dc:contributor>
    <dc:rights>Attribution 4.0 International</dc:rights>
    <dc:language>eng</dc:language>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:issued>2022-10-08</dcterms:issued>
    <dcterms:title>Bioinspired Chiral Template Guided Mineralization for Biophotonic Structural Materials</dcterms:title>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen