Publikation:

Spectral stability of small-amplitude viscous shock waves in several space dimensions

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2009

Autor:innen

Szmolyan, Peter

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Archive for Rational Mechanics and Analysis. 2009, 195(2), pp. 353-373. ISSN 0003-9527. Available under: doi: 10.1007/s00205-009-0272-3

Zusammenfassung

A planar viscous shock profile of a hyperbolic–parabolic system of conservation laws is a steady solution in a moving coordinate frame. The asymptotic stability of viscous profiles and the related vanishing-viscosity limit are delicate questions already in the well understood case of one space dimension and even more so in the case of several space dimensions. It is a natural idea to study the stability of viscous profiles by analyzing the spectrum of the linearization about the profile. The Evans function method provides a geometric dynamical-systems framework to study the eigenvalue problem. In this approach eigenvalues correspond to zeros of an essentially analytic function Ε(ρλ,ρω) which detects nontrivial intersections of the so-called stable and unstable spaces, that is, spaces of solutions that decay on one (“−∞”) or the other side (“ + ∞”) of the shock wave, respectively. In a series of pioneering papers, Kevin Zumbrun and collaborators have established in various contexts that spectral stability, that is, the non-vanishing of Ε(ρλ,ρω) and the non-vanishing of the Lopatinski–Kreiss–Majda function Δ(λ,ω), imply nonlinear stability of viscous shock profiles in several space dimensions. In this paper we show that these conditions hold true for small amplitude extreme shocks under natural assumptions. This is done by exploiting the slow-fast nature of the small-amplitude limit, which was used in a previous paper by the authors to prove spectral stability of small-amplitude shock waves in one space dimension. Geometric singular perturbation methods are applied to decompose the stable and unstable spaces into subbundles with good control over their limiting behavior. Three qualitatively different regimes are distinguished that relate the small strength e of the shock wave to appropriate ranges of values of the spectral parameters (ρλ, ρ ω). Various rescalings are used to overcome apparent degeneracies in the problem caused by loss of hyperbolicity or lack of transversality.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690FREISTÜHLER, Heinrich, Peter SZMOLYAN, 2009. Spectral stability of small-amplitude viscous shock waves in several space dimensions. In: Archive for Rational Mechanics and Analysis. 2009, 195(2), pp. 353-373. ISSN 0003-9527. Available under: doi: 10.1007/s00205-009-0272-3
BibTex
@article{Freistuhler2009Spect-12748,
  year={2009},
  doi={10.1007/s00205-009-0272-3},
  title={Spectral stability of small-amplitude viscous shock waves in several space dimensions},
  number={2},
  volume={195},
  issn={0003-9527},
  journal={Archive for Rational Mechanics and Analysis},
  pages={353--373},
  author={Freistühler, Heinrich and Szmolyan, Peter}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/12748">
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/12748"/>
    <dc:creator>Freistühler, Heinrich</dc:creator>
    <dcterms:abstract xml:lang="eng">A planar viscous shock profile of a hyperbolic–parabolic system of conservation laws is a steady solution in a moving coordinate frame. The asymptotic stability of viscous profiles and the related vanishing-viscosity limit are delicate questions already in the well understood case of one space dimension and even more so in the case of several space dimensions. It is a natural idea to study the stability of viscous profiles by analyzing the spectrum of the linearization about the profile. The Evans function method provides a geometric dynamical-systems framework to study the eigenvalue problem. In this approach eigenvalues correspond to zeros of an essentially analytic function Ε(ρλ,ρω) which detects nontrivial intersections of the so-called stable and unstable spaces, that is, spaces of solutions that decay on one (“−∞”) or the other side (“ + ∞”) of the shock wave, respectively. In a series of pioneering papers, Kevin Zumbrun and collaborators have established in various contexts that spectral stability, that is, the non-vanishing of Ε(ρλ,ρω) and the non-vanishing of the Lopatinski–Kreiss–Majda function Δ(λ,ω), imply nonlinear stability of viscous shock profiles in several space dimensions. In this paper we show that these conditions hold true for small amplitude extreme shocks under natural assumptions. This is done by exploiting the slow-fast nature of the small-amplitude limit, which was used in a previous paper by the authors to prove spectral stability of small-amplitude shock waves in one space dimension. Geometric singular perturbation methods are applied to decompose the stable and unstable spaces into subbundles with good control over their limiting behavior. Three qualitatively different regimes are distinguished that relate the small strength e of the shock wave to appropriate ranges of values of the spectral parameters (ρλ, ρ ω). Various rescalings are used to overcome apparent degeneracies in the problem caused by loss of hyperbolicity or lack of transversality.</dcterms:abstract>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:issued>2009</dcterms:issued>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:language>eng</dc:language>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:title>Spectral stability of small-amplitude viscous shock waves in several space dimensions</dcterms:title>
    <dc:creator>Szmolyan, Peter</dc:creator>
    <dcterms:bibliographicCitation>First publ. in: Archive for Rational Mechanics and Analysis 195 (2010), 2, pp. 353-373</dcterms:bibliographicCitation>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-07-19T07:22:40Z</dc:date>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-07-19T07:22:40Z</dcterms:available>
    <dc:contributor>Szmolyan, Peter</dc:contributor>
    <dc:contributor>Freistühler, Heinrich</dc:contributor>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen