Publikation: Spectral stability of small-amplitude viscous shock waves in several space dimensions
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
A planar viscous shock profile of a hyperbolic–parabolic system of conservation laws is a steady solution in a moving coordinate frame. The asymptotic stability of viscous profiles and the related vanishing-viscosity limit are delicate questions already in the well understood case of one space dimension and even more so in the case of several space dimensions. It is a natural idea to study the stability of viscous profiles by analyzing the spectrum of the linearization about the profile. The Evans function method provides a geometric dynamical-systems framework to study the eigenvalue problem. In this approach eigenvalues correspond to zeros of an essentially analytic function Ε(ρλ,ρω) which detects nontrivial intersections of the so-called stable and unstable spaces, that is, spaces of solutions that decay on one (“−∞”) or the other side (“ + ∞”) of the shock wave, respectively. In a series of pioneering papers, Kevin Zumbrun and collaborators have established in various contexts that spectral stability, that is, the non-vanishing of Ε(ρλ,ρω) and the non-vanishing of the Lopatinski–Kreiss–Majda function Δ(λ,ω), imply nonlinear stability of viscous shock profiles in several space dimensions. In this paper we show that these conditions hold true for small amplitude extreme shocks under natural assumptions. This is done by exploiting the slow-fast nature of the small-amplitude limit, which was used in a previous paper by the authors to prove spectral stability of small-amplitude shock waves in one space dimension. Geometric singular perturbation methods are applied to decompose the stable and unstable spaces into subbundles with good control over their limiting behavior. Three qualitatively different regimes are distinguished that relate the small strength e of the shock wave to appropriate ranges of values of the spectral parameters (ρλ, ρ ω). Various rescalings are used to overcome apparent degeneracies in the problem caused by loss of hyperbolicity or lack of transversality.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
FREISTÜHLER, Heinrich, Peter SZMOLYAN, 2009. Spectral stability of small-amplitude viscous shock waves in several space dimensions. In: Archive for Rational Mechanics and Analysis. 2009, 195(2), pp. 353-373. ISSN 0003-9527. Available under: doi: 10.1007/s00205-009-0272-3BibTex
@article{Freistuhler2009Spect-12748, year={2009}, doi={10.1007/s00205-009-0272-3}, title={Spectral stability of small-amplitude viscous shock waves in several space dimensions}, number={2}, volume={195}, issn={0003-9527}, journal={Archive for Rational Mechanics and Analysis}, pages={353--373}, author={Freistühler, Heinrich and Szmolyan, Peter} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/12748"> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/12748"/> <dc:creator>Freistühler, Heinrich</dc:creator> <dcterms:abstract xml:lang="eng">A planar viscous shock profile of a hyperbolic–parabolic system of conservation laws is a steady solution in a moving coordinate frame. The asymptotic stability of viscous profiles and the related vanishing-viscosity limit are delicate questions already in the well understood case of one space dimension and even more so in the case of several space dimensions. It is a natural idea to study the stability of viscous profiles by analyzing the spectrum of the linearization about the profile. The Evans function method provides a geometric dynamical-systems framework to study the eigenvalue problem. In this approach eigenvalues correspond to zeros of an essentially analytic function Ε(ρλ,ρω) which detects nontrivial intersections of the so-called stable and unstable spaces, that is, spaces of solutions that decay on one (“−∞”) or the other side (“ + ∞”) of the shock wave, respectively. In a series of pioneering papers, Kevin Zumbrun and collaborators have established in various contexts that spectral stability, that is, the non-vanishing of Ε(ρλ,ρω) and the non-vanishing of the Lopatinski–Kreiss–Majda function Δ(λ,ω), imply nonlinear stability of viscous shock profiles in several space dimensions. In this paper we show that these conditions hold true for small amplitude extreme shocks under natural assumptions. This is done by exploiting the slow-fast nature of the small-amplitude limit, which was used in a previous paper by the authors to prove spectral stability of small-amplitude shock waves in one space dimension. Geometric singular perturbation methods are applied to decompose the stable and unstable spaces into subbundles with good control over their limiting behavior. Three qualitatively different regimes are distinguished that relate the small strength e of the shock wave to appropriate ranges of values of the spectral parameters (ρλ, ρ ω). Various rescalings are used to overcome apparent degeneracies in the problem caused by loss of hyperbolicity or lack of transversality.</dcterms:abstract> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:rights>terms-of-use</dc:rights> <dcterms:issued>2009</dcterms:issued> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:language>eng</dc:language> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dcterms:title>Spectral stability of small-amplitude viscous shock waves in several space dimensions</dcterms:title> <dc:creator>Szmolyan, Peter</dc:creator> <dcterms:bibliographicCitation>First publ. in: Archive for Rational Mechanics and Analysis 195 (2010), 2, pp. 353-373</dcterms:bibliographicCitation> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-07-19T07:22:40Z</dc:date> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-07-19T07:22:40Z</dcterms:available> <dc:contributor>Szmolyan, Peter</dc:contributor> <dc:contributor>Freistühler, Heinrich</dc:contributor> </rdf:Description> </rdf:RDF>