Dies ist nicht die neueste Version dieses Items. Die neueste Version finden Sie unter hier.
Publikation: Analytic continuations of log-exp-analytic germs
Lade...
Dateien
Datum
2017
Autor:innen
Kaiser, Tobias
Speissegger, Patrick
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Green
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Submitted
Wird erscheinen in
Zusammenfassung
We describe maximal, in a sense made precise, analytic continuations of germs at infinity of unary functions definable in the o-minimal structure R_an,exp on the Riemann surface of the logarithm. As one application, we give an upper bound on the logarithmic-exponential complexity of the compositional inverse of an infinitely increasing such germ, in terms of its own logarithmic-exponential complexity and its level. As a second application, we strengthen Wilkie's theorem on definable complex analytic continuations of germs belonging to the residue field of the valuation ring of all polynomially bounded definable germs.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
O-minimal structures, log-exp-analytic germs, analytic continuation
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690
BibTex
RDF
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
54 pages. Corollary 1.6 and 7.6 were added, to describe complex analytic continuations resulting from our Continuation theorem. Application 1.3 was changed to correspond to Corollary 8.10(1) instead of 8.5. Both changes were made to reflect applications in an upcoming paper; no changes were made to the main theorems or their proofs.