Forecasting GDP growth using mixed-frequency models with switching regimes

Lade...
Vorschaubild
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2015
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
International Journal of Forecasting. 2015, 31(1), pp. 33-50. ISSN 0169-2070. eISSN 1872-8200. Available under: doi: 10.1016/j.ijforecast.2014.04.002
Zusammenfassung

For modelling mixed-frequency data with a business cycle pattern, we introduce the Markov-switching Mixed Data Sampling model with unrestricted lag polynomial (MS-U-MIDAS). Usually, models of the MIDAS-class use lag polynomials of a specific function which impose some structure on the weights of the regressors included in the model. This may lead to a deterioration in the predictive power of the model if the structure imposed differs from the data generating process. When the difference between the available data frequencies is small and there is no risk of parameter proliferation, using an unrestricted lag polynomial might not only simplify the model estimation, but also improve its forecasting performance. We allow the parameters of the MIDAS model with an unrestricted lag polynomial to change according to a Markov-switching scheme in order to account for the business cycle pattern observed in many macroeconomic variables. Thus, we combine the unrestricted MIDAS with a Markov-switching approach and propose a new Markov-switching MIDAS model with unrestricted lag polynomial (MS-U-MIDAS). We apply this model to a large dataset with the help of factor analysis. Monte Carlo experiments and an empirical forecasting comparison carried out for the U.S. GDP growth show that the models of the MS-U-MIDAS class exhibit nowcasting and forecasting performances which are similar to or better than those of their counterparts with restricted lag polynomials.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
330 Wirtschaft
Schlagwörter
Markov-switching, Business cycle, Mixed-frequency data analysis, Forecasting
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690BARSOUM, Fady, Sandra STANKIEWICZ, 2015. Forecasting GDP growth using mixed-frequency models with switching regimes. In: International Journal of Forecasting. 2015, 31(1), pp. 33-50. ISSN 0169-2070. eISSN 1872-8200. Available under: doi: 10.1016/j.ijforecast.2014.04.002
BibTex
@article{Barsoum2015Forec-31307,
  year={2015},
  doi={10.1016/j.ijforecast.2014.04.002},
  title={Forecasting GDP growth using mixed-frequency models with switching regimes},
  number={1},
  volume={31},
  issn={0169-2070},
  journal={International Journal of Forecasting},
  pages={33--50},
  author={Barsoum, Fady and Stankiewicz, Sandra}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/31307">
    <dc:creator>Barsoum, Fady</dc:creator>
    <dcterms:abstract xml:lang="eng">For modelling mixed-frequency data with a business cycle pattern, we introduce the Markov-switching Mixed Data Sampling model with unrestricted lag polynomial (MS-U-MIDAS). Usually, models of the MIDAS-class use lag polynomials of a specific function which impose some structure on the weights of the regressors included in the model. This may lead to a deterioration in the predictive power of the model if the structure imposed differs from the data generating process. When the difference between the available data frequencies is small and there is no risk of parameter proliferation, using an unrestricted lag polynomial might not only simplify the model estimation, but also improve its forecasting performance. We allow the parameters of the MIDAS model with an unrestricted lag polynomial to change according to a Markov-switching scheme in order to account for the business cycle pattern observed in many macroeconomic variables. Thus, we combine the unrestricted MIDAS with a Markov-switching approach and propose a new Markov-switching MIDAS model with unrestricted lag polynomial (MS-U-MIDAS). We apply this model to a large dataset with the help of factor analysis. Monte Carlo experiments and an empirical forecasting comparison carried out for the U.S. GDP growth show that the models of the MS-U-MIDAS class exhibit nowcasting and forecasting performances which are similar to or better than those of their counterparts with restricted lag polynomials.</dcterms:abstract>
    <dcterms:title>Forecasting GDP growth using mixed-frequency models with switching regimes</dcterms:title>
    <dc:language>eng</dc:language>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/31307"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/46"/>
    <dc:contributor>Barsoum, Fady</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-06-29T09:25:17Z</dc:date>
    <dc:creator>Stankiewicz, Sandra</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-06-29T09:25:17Z</dcterms:available>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/46"/>
    <dcterms:issued>2015</dcterms:issued>
    <dc:contributor>Stankiewicz, Sandra</dc:contributor>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Begutachtet
Diese Publikation teilen