Publikation:

Forecasting GDP growth using mixed-frequency models with switching regimes

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2015

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

International Journal of Forecasting. 2015, 31(1), pp. 33-50. ISSN 0169-2070. eISSN 1872-8200. Available under: doi: 10.1016/j.ijforecast.2014.04.002

Zusammenfassung

For modelling mixed-frequency data with a business cycle pattern, we introduce the Markov-switching Mixed Data Sampling model with unrestricted lag polynomial (MS-U-MIDAS). Usually, models of the MIDAS-class use lag polynomials of a specific function which impose some structure on the weights of the regressors included in the model. This may lead to a deterioration in the predictive power of the model if the structure imposed differs from the data generating process. When the difference between the available data frequencies is small and there is no risk of parameter proliferation, using an unrestricted lag polynomial might not only simplify the model estimation, but also improve its forecasting performance. We allow the parameters of the MIDAS model with an unrestricted lag polynomial to change according to a Markov-switching scheme in order to account for the business cycle pattern observed in many macroeconomic variables. Thus, we combine the unrestricted MIDAS with a Markov-switching approach and propose a new Markov-switching MIDAS model with unrestricted lag polynomial (MS-U-MIDAS). We apply this model to a large dataset with the help of factor analysis. Monte Carlo experiments and an empirical forecasting comparison carried out for the U.S. GDP growth show that the models of the MS-U-MIDAS class exhibit nowcasting and forecasting performances which are similar to or better than those of their counterparts with restricted lag polynomials.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
330 Wirtschaft

Schlagwörter

Markov-switching, Business cycle, Mixed-frequency data analysis, Forecasting

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690BARSOUM, Fady, Sandra STANKIEWICZ, 2015. Forecasting GDP growth using mixed-frequency models with switching regimes. In: International Journal of Forecasting. 2015, 31(1), pp. 33-50. ISSN 0169-2070. eISSN 1872-8200. Available under: doi: 10.1016/j.ijforecast.2014.04.002
BibTex
@article{Barsoum2015Forec-31307,
  year={2015},
  doi={10.1016/j.ijforecast.2014.04.002},
  title={Forecasting GDP growth using mixed-frequency models with switching regimes},
  number={1},
  volume={31},
  issn={0169-2070},
  journal={International Journal of Forecasting},
  pages={33--50},
  author={Barsoum, Fady and Stankiewicz, Sandra}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/31307">
    <dc:creator>Barsoum, Fady</dc:creator>
    <dcterms:abstract xml:lang="eng">For modelling mixed-frequency data with a business cycle pattern, we introduce the Markov-switching Mixed Data Sampling model with unrestricted lag polynomial (MS-U-MIDAS). Usually, models of the MIDAS-class use lag polynomials of a specific function which impose some structure on the weights of the regressors included in the model. This may lead to a deterioration in the predictive power of the model if the structure imposed differs from the data generating process. When the difference between the available data frequencies is small and there is no risk of parameter proliferation, using an unrestricted lag polynomial might not only simplify the model estimation, but also improve its forecasting performance. We allow the parameters of the MIDAS model with an unrestricted lag polynomial to change according to a Markov-switching scheme in order to account for the business cycle pattern observed in many macroeconomic variables. Thus, we combine the unrestricted MIDAS with a Markov-switching approach and propose a new Markov-switching MIDAS model with unrestricted lag polynomial (MS-U-MIDAS). We apply this model to a large dataset with the help of factor analysis. Monte Carlo experiments and an empirical forecasting comparison carried out for the U.S. GDP growth show that the models of the MS-U-MIDAS class exhibit nowcasting and forecasting performances which are similar to or better than those of their counterparts with restricted lag polynomials.</dcterms:abstract>
    <dcterms:title>Forecasting GDP growth using mixed-frequency models with switching regimes</dcterms:title>
    <dc:language>eng</dc:language>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/31307"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/46"/>
    <dc:contributor>Barsoum, Fady</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-06-29T09:25:17Z</dc:date>
    <dc:creator>Stankiewicz, Sandra</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-06-29T09:25:17Z</dcterms:available>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/46"/>
    <dcterms:issued>2015</dcterms:issued>
    <dc:contributor>Stankiewicz, Sandra</dc:contributor>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Begutachtet
Diese Publikation teilen