Publikation: QT30 : A Corpus of Argument and Conflict in Broadcast Debate
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Broadcast political debate is a core pillar of democracy: it is the public’s easiest access to opinions that shape policies and enables the general public to make informed choices. With QT30, we present the largest corpus of analysed dialogical argumentation ever created (19,842 utterances, 280,000 words) and also the largest corpus of analysed broadcast political debate to date, using 30 episodes of BBC’s ‘Question Time’ from 2020 and 2021. Question Time is the prime institution in UK broadcast political debate and features questions from the public on current political issues, which are responded to by a weekly panel of five figures of UK politics and society. QT30 is highly argumentative and combines language of well-versed political rhetoric with direct, often combative, justification-seeking of the general public. QT30 is annotated with Inference Anchoring Theory, a framework well-known in argument mining, which encodes the way arguments and conflicts are created and reacted to in dialogical settings. The resource is freely available at http://corpora.aifdb.org/qt30.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
HAUTLI-JANISZ, Annette, Zlata KIKTEVA, Wassiliki SISKOU, Kamila GORSKA, Ray BECKER, Chris REED, 2022. QT30 : A Corpus of Argument and Conflict in Broadcast Debate. Thirteenth Language Resources and Evaluation Conference (LREC 2022). Marseille, France, 20. Juni 2022 - 25. Juni 2022. In: CALZOLARI, Nicoletta, ed., Frédéric BÉCHET, ed., Philippe BLACHE, ed. and others. Proceedings of the Thirteenth Language Resources and Evaluation Conference. Paris: European Language Resources Association (ELRA), 2022, pp. 3291-3300. ISBN 979-10-95546-72-6BibTex
@inproceedings{HautliJanisz2022Corpu-66615, year={2022}, title={QT30 : A Corpus of Argument and Conflict in Broadcast Debate}, url={https://aclanthology.org/2022.lrec-1.352/}, isbn={979-10-95546-72-6}, publisher={European Language Resources Association (ELRA)}, address={Paris}, booktitle={Proceedings of the Thirteenth Language Resources and Evaluation Conference}, pages={3291--3300}, editor={Calzolari, Nicoletta and Béchet, Frédéric and Blache, Philippe}, author={Hautli-Janisz, Annette and Kikteva, Zlata and Siskou, Wassiliki and Gorska, Kamila and Becker, Ray and Reed, Chris} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/66615"> <dc:creator>Hautli-Janisz, Annette</dc:creator> <dc:contributor>Reed, Chris</dc:contributor> <dc:contributor>Siskou, Wassiliki</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-04-17T13:07:44Z</dcterms:available> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/45"/> <dc:creator>Kikteva, Zlata</dc:creator> <dc:creator>Siskou, Wassiliki</dc:creator> <dc:contributor>Gorska, Kamila</dc:contributor> <dc:rights>terms-of-use</dc:rights> <dcterms:issued>2022</dcterms:issued> <dc:creator>Becker, Ray</dc:creator> <dcterms:title>QT30 : A Corpus of Argument and Conflict in Broadcast Debate</dcterms:title> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/45"/> <dc:language>eng</dc:language> <dcterms:abstract>Broadcast political debate is a core pillar of democracy: it is the public’s easiest access to opinions that shape policies and enables the general public to make informed choices. With QT30, we present the largest corpus of analysed dialogical argumentation ever created (19,842 utterances, 280,000 words) and also the largest corpus of analysed broadcast political debate to date, using 30 episodes of BBC’s ‘Question Time’ from 2020 and 2021. Question Time is the prime institution in UK broadcast political debate and features questions from the public on current political issues, which are responded to by a weekly panel of five figures of UK politics and society. QT30 is highly argumentative and combines language of well-versed political rhetoric with direct, often combative, justification-seeking of the general public. QT30 is annotated with Inference Anchoring Theory, a framework well-known in argument mining, which encodes the way arguments and conflicts are created and reacted to in dialogical settings. The resource is freely available at http://corpora.aifdb.org/qt30.</dcterms:abstract> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/66615/1/Hautli-Janisz_2-10bowcc3rlycy3.pdf"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-04-17T13:07:44Z</dc:date> <dc:contributor>Becker, Ray</dc:contributor> <dc:creator>Gorska, Kamila</dc:creator> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/66615/1/Hautli-Janisz_2-10bowcc3rlycy3.pdf"/> <dc:contributor>Hautli-Janisz, Annette</dc:contributor> <dc:contributor>Kikteva, Zlata</dc:contributor> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/66615"/> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:creator>Reed, Chris</dc:creator> </rdf:Description> </rdf:RDF>