Publikation:

I-MuPPET : Interactive Multi-Pigeon Pose Estimation and Tracking

Lade...
Vorschaubild

Dateien

Waldmann_2-1073y8nlriu1n9.pdf
Waldmann_2-1073y8nlriu1n9.pdfGröße: 254.84 KBDownloads: 64

Datum

2022

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

ANDRES, Björn, Hrsg. und andere. Pattern Recognition : 44th DAGM German Conference, DAGM GCPR 2022, Konstanz, Germany, September 27–30, 2022, Proceedings. Cham: Springer, 2022, S. 513-528. Lecture Notes in Computer Science. 13485. ISSN 0302-9743. eISSN 1611-3349. ISBN 978-3-031-16787-4. Verfügbar unter: doi: 10.1007/978-3-031-16788-1_31

Zusammenfassung

Most tracking data encompasses humans, the availability of annotated tracking data for animals is limited, especially for multiple objects. To overcome this obstacle, we present I-MuPPET, a system to estimate and track 2D keypoints of multiple pigeons at interactive speed. We train a Keypoint R-CNN on single pigeons in a fully supervised manner and infer keypoints and bounding boxes of multiple pigeons with that neural network. We use a state of the art tracker to track the individual pigeons in video sequences. I-MuPPET is tested quantitatively on single pigeon motion capture data, and we achieve comparable accuracy to state of the art 2D animal pose estimation methods in terms of Root Mean Square Error (RMSE). Additionally, we test I-MuPPET to estimate and track poses of multiple pigeons in video sequences with up to four pigeons and obtain stable and accurate results with up to 17 fps. To establish a baseline for future research, we perform a detailed quantitative tracking evaluation, which yields encouraging results.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

4th DAGM German Conference on Pattern Recognition (DAGM GCPR 2022), 27. Sept. 2022 - 30. Sept. 2022, Konstanz
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Datensatz
I-MuPPET: Interactive Multi-Pigeon Pose Estimation and Tracking (Dataset)
(Vv1, 2023) Waldmann, Urs; Naik, Hemal; Nagy, Mate; Kano, Fumihiro; Couzin, Iain D.; Deussen, Oliver; Goldlücke, Bastian

Zitieren

ISO 690WALDMANN, Urs, Hemal NAIK, Nagy MÁTÉ, Fumihiro KANO, Iain D. COUZIN, Oliver DEUSSEN, Bastian GOLDLÜCKE, 2022. I-MuPPET : Interactive Multi-Pigeon Pose Estimation and Tracking. 4th DAGM German Conference on Pattern Recognition (DAGM GCPR 2022). Konstanz, 27. Sept. 2022 - 30. Sept. 2022. In: ANDRES, Björn, Hrsg. und andere. Pattern Recognition : 44th DAGM German Conference, DAGM GCPR 2022, Konstanz, Germany, September 27–30, 2022, Proceedings. Cham: Springer, 2022, S. 513-528. Lecture Notes in Computer Science. 13485. ISSN 0302-9743. eISSN 1611-3349. ISBN 978-3-031-16787-4. Verfügbar unter: doi: 10.1007/978-3-031-16788-1_31
BibTex
@inproceedings{Waldmann2022IMuPP-58700,
  title={I-MuPPET : Interactive Multi-Pigeon Pose Estimation and Tracking},
  year={2022},
  doi={10.1007/978-3-031-16788-1_31},
  number={13485},
  isbn={978-3-031-16787-4},
  issn={0302-9743},
  address={Cham},
  publisher={Springer},
  series={Lecture Notes in Computer Science},
  booktitle={Pattern Recognition : 44th DAGM German Conference, DAGM GCPR 2022, Konstanz, Germany, September 27–30, 2022, Proceedings},
  pages={513--528},
  editor={Andres, Björn},
  author={Waldmann, Urs and Naik, Hemal and Máté, Nagy and Kano, Fumihiro and Couzin, Iain D. and Deussen, Oliver and Goldlücke, Bastian}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/58700">
    <dc:language>eng</dc:language>
    <dc:creator>Kano, Fumihiro</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43615"/>
    <dcterms:issued>2022</dcterms:issued>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-09-28T13:20:24Z</dc:date>
    <dc:contributor>Goldlücke, Bastian</dc:contributor>
    <dcterms:title>I-MuPPET : Interactive Multi-Pigeon Pose Estimation and Tracking</dcterms:title>
    <dc:creator>Deussen, Oliver</dc:creator>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/58700/1/Waldmann_2-1073y8nlriu1n9.pdf"/>
    <dc:contributor>Couzin, Iain D.</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-09-28T13:20:24Z</dcterms:available>
    <dc:contributor>Waldmann, Urs</dc:contributor>
    <dc:contributor>Máté, Nagy</dc:contributor>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/58700/1/Waldmann_2-1073y8nlriu1n9.pdf"/>
    <dcterms:abstract xml:lang="eng">Most tracking data encompasses humans, the availability of annotated tracking data for animals is limited, especially for multiple objects. To overcome this obstacle, we present I-MuPPET, a system to estimate and track 2D keypoints of multiple pigeons at interactive speed. We train a Keypoint R-CNN on single pigeons in a fully supervised manner and infer keypoints and bounding boxes of multiple pigeons with that neural network. We use a state of the art tracker to track the individual pigeons in video sequences. I-MuPPET is tested quantitatively on single pigeon motion capture data, and we achieve comparable accuracy to state of the art 2D animal pose estimation methods in terms of Root Mean Square Error (RMSE). Additionally, we test I-MuPPET to estimate and track poses of multiple pigeons in video sequences with up to four pigeons and obtain stable and accurate results with up to 17 fps. To establish a baseline for future research, we perform a detailed quantitative tracking evaluation, which yields encouraging results.</dcterms:abstract>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Naik, Hemal</dc:contributor>
    <dc:creator>Naik, Hemal</dc:creator>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Waldmann, Urs</dc:creator>
    <dc:rights>terms-of-use</dc:rights>
    <dc:creator>Máté, Nagy</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43615"/>
    <dc:creator>Couzin, Iain D.</dc:creator>
    <dc:contributor>Deussen, Oliver</dc:contributor>
    <dc:creator>Goldlücke, Bastian</dc:creator>
    <dc:contributor>Kano, Fumihiro</dc:contributor>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/58700"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen