I-MuPPET : Interactive Multi-Pigeon Pose Estimation and Tracking

Loading...
Thumbnail Image
Date
2022
Editors
Contact
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
ArXiv-ID
International patent number
Link to the license
EU project number
Project
Open Access publication
Restricted until
September 30, 2023
Title in another language
Research Projects
Organizational Units
Journal Issue
Publication type
Contribution to a conference collection
Publication status
Published
Published in
Pattern Recognition : 44th DAGM German Conference, DAGM GCPR 2022, Konstanz, Germany, September 27–30, 2022, Proceedings / Andres, Björn et al. (ed.). - Cham : Springer, 2022. - (Lecture Notes in Computer Science ; 13485). - pp. 513-528. - ISSN 0302-9743. - eISSN 1611-3349. - ISBN 978-3-031-16787-4
Abstract
Most tracking data encompasses humans, the availability of annotated tracking data for animals is limited, especially for multiple objects. To overcome this obstacle, we present I-MuPPET, a system to estimate and track 2D keypoints of multiple pigeons at interactive speed. We train a Keypoint R-CNN on single pigeons in a fully supervised manner and infer keypoints and bounding boxes of multiple pigeons with that neural network. We use a state of the art tracker to track the individual pigeons in video sequences. I-MuPPET is tested quantitatively on single pigeon motion capture data, and we achieve comparable accuracy to state of the art 2D animal pose estimation methods in terms of Root Mean Square Error (RMSE). Additionally, we test I-MuPPET to estimate and track poses of multiple pigeons in video sequences with up to four pigeons and obtain stable and accurate results with up to 17 fps. To establish a baseline for future research, we perform a detailed quantitative tracking evaluation, which yields encouraging results.
Summary in another language
Subject (DDC)
004 Computer Science
Keywords
Conference
4th DAGM German Conference on Pattern Recognition (DAGM GCPR 2022), Sep 27, 2022 - Sep 30, 2022, Konstanz
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690WALDMANN, Urs, Hemal NAIK, Nagy MÁTÉ, Fumihiro KANO, Iain D. COUZIN, Oliver DEUSSEN, Bastian GOLDLÜCKE, 2022. I-MuPPET : Interactive Multi-Pigeon Pose Estimation and Tracking. 4th DAGM German Conference on Pattern Recognition (DAGM GCPR 2022). Konstanz, Sep 27, 2022 - Sep 30, 2022. In: ANDRES, Björn, ed. and others. Pattern Recognition : 44th DAGM German Conference, DAGM GCPR 2022, Konstanz, Germany, September 27–30, 2022, Proceedings. Cham:Springer, pp. 513-528. ISSN 0302-9743. eISSN 1611-3349. ISBN 978-3-031-16787-4. Available under: doi: 10.1007/978-3-031-16788-1_31
BibTex
@inproceedings{Waldmann2022IMuPP-58700,
  year={2022},
  doi={10.1007/978-3-031-16788-1_31},
  title={I-MuPPET : Interactive Multi-Pigeon Pose Estimation and Tracking},
  number={13485},
  isbn={978-3-031-16787-4},
  issn={0302-9743},
  publisher={Springer},
  address={Cham},
  series={Lecture Notes in Computer Science},
  booktitle={Pattern Recognition : 44th DAGM German Conference, DAGM GCPR 2022, Konstanz, Germany, September 27–30, 2022, Proceedings},
  pages={513--528},
  editor={Andres, Björn},
  author={Waldmann, Urs and Naik, Hemal and Máté, Nagy and Kano, Fumihiro and Couzin, Iain D. and Deussen, Oliver and Goldlücke, Bastian}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/58700">
    <dc:language>eng</dc:language>
    <dc:creator>Kano, Fumihiro</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43615"/>
    <dcterms:issued>2022</dcterms:issued>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-09-28T13:20:24Z</dc:date>
    <dc:contributor>Goldlücke, Bastian</dc:contributor>
    <dcterms:title>I-MuPPET : Interactive Multi-Pigeon Pose Estimation and Tracking</dcterms:title>
    <dc:creator>Deussen, Oliver</dc:creator>
    <dc:contributor>Couzin, Iain D.</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-09-28T13:20:24Z</dcterms:available>
    <dc:contributor>Waldmann, Urs</dc:contributor>
    <dc:contributor>Máté, Nagy</dc:contributor>
    <dcterms:abstract xml:lang="eng">Most tracking data encompasses humans, the availability of annotated tracking data for animals is limited, especially for multiple objects. To overcome this obstacle, we present I-MuPPET, a system to estimate and track 2D keypoints of multiple pigeons at interactive speed. We train a Keypoint R-CNN on single pigeons in a fully supervised manner and infer keypoints and bounding boxes of multiple pigeons with that neural network. We use a state of the art tracker to track the individual pigeons in video sequences. I-MuPPET is tested quantitatively on single pigeon motion capture data, and we achieve comparable accuracy to state of the art 2D animal pose estimation methods in terms of Root Mean Square Error (RMSE). Additionally, we test I-MuPPET to estimate and track poses of multiple pigeons in video sequences with up to four pigeons and obtain stable and accurate results with up to 17 fps. To establish a baseline for future research, we perform a detailed quantitative tracking evaluation, which yields encouraging results.</dcterms:abstract>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Naik, Hemal</dc:contributor>
    <dc:creator>Naik, Hemal</dc:creator>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Waldmann, Urs</dc:creator>
    <dc:rights>terms-of-use</dc:rights>
    <dc:creator>Máté, Nagy</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43615"/>
    <dc:creator>Couzin, Iain D.</dc:creator>
    <dc:contributor>Deussen, Oliver</dc:contributor>
    <dc:creator>Goldlücke, Bastian</dc:creator>
    <dc:contributor>Kano, Fumihiro</dc:contributor>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/58700"/>
  </rdf:Description>
</rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Contact
URL of original publication
Test date of URL
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
Yes
Refereed