I-MuPPET : Interactive Multi-Pigeon Pose Estimation and Tracking
Dateien
Datum
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Most tracking data encompasses humans, the availability of annotated tracking data for animals is limited, especially for multiple objects. To overcome this obstacle, we present I-MuPPET, a system to estimate and track 2D keypoints of multiple pigeons at interactive speed. We train a Keypoint R-CNN on single pigeons in a fully supervised manner and infer keypoints and bounding boxes of multiple pigeons with that neural network. We use a state of the art tracker to track the individual pigeons in video sequences. I-MuPPET is tested quantitatively on single pigeon motion capture data, and we achieve comparable accuracy to state of the art 2D animal pose estimation methods in terms of Root Mean Square Error (RMSE). Additionally, we test I-MuPPET to estimate and track poses of multiple pigeons in video sequences with up to four pigeons and obtain stable and accurate results with up to 17 fps. To establish a baseline for future research, we perform a detailed quantitative tracking evaluation, which yields encouraging results.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
WALDMANN, Urs, Hemal NAIK, Nagy MÁTÉ, Fumihiro KANO, Iain D. COUZIN, Oliver DEUSSEN, Bastian GOLDLÜCKE, 2022. I-MuPPET : Interactive Multi-Pigeon Pose Estimation and Tracking. 4th DAGM German Conference on Pattern Recognition (DAGM GCPR 2022). Konstanz, 27. Sept. 2022 - 30. Sept. 2022. In: ANDRES, Björn, ed. and others. Pattern Recognition : 44th DAGM German Conference, DAGM GCPR 2022, Konstanz, Germany, September 27–30, 2022, Proceedings. Cham: Springer, 2022, pp. 513-528. Lecture Notes in Computer Science. 13485. ISSN 0302-9743. eISSN 1611-3349. ISBN 978-3-031-16787-4. Available under: doi: 10.1007/978-3-031-16788-1_31BibTex
@inproceedings{Waldmann2022IMuPP-58700, year={2022}, doi={10.1007/978-3-031-16788-1_31}, title={I-MuPPET : Interactive Multi-Pigeon Pose Estimation and Tracking}, number={13485}, isbn={978-3-031-16787-4}, issn={0302-9743}, publisher={Springer}, address={Cham}, series={Lecture Notes in Computer Science}, booktitle={Pattern Recognition : 44th DAGM German Conference, DAGM GCPR 2022, Konstanz, Germany, September 27–30, 2022, Proceedings}, pages={513--528}, editor={Andres, Björn}, author={Waldmann, Urs and Naik, Hemal and Máté, Nagy and Kano, Fumihiro and Couzin, Iain D. and Deussen, Oliver and Goldlücke, Bastian} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/58700"> <dc:language>eng</dc:language> <dc:creator>Kano, Fumihiro</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43615"/> <dcterms:issued>2022</dcterms:issued> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-09-28T13:20:24Z</dc:date> <dc:contributor>Goldlücke, Bastian</dc:contributor> <dcterms:title>I-MuPPET : Interactive Multi-Pigeon Pose Estimation and Tracking</dcterms:title> <dc:creator>Deussen, Oliver</dc:creator> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/58700/1/Waldmann_2-1073y8nlriu1n9.pdf"/> <dc:contributor>Couzin, Iain D.</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-09-28T13:20:24Z</dcterms:available> <dc:contributor>Waldmann, Urs</dc:contributor> <dc:contributor>Máté, Nagy</dc:contributor> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/58700/1/Waldmann_2-1073y8nlriu1n9.pdf"/> <dcterms:abstract xml:lang="eng">Most tracking data encompasses humans, the availability of annotated tracking data for animals is limited, especially for multiple objects. To overcome this obstacle, we present I-MuPPET, a system to estimate and track 2D keypoints of multiple pigeons at interactive speed. We train a Keypoint R-CNN on single pigeons in a fully supervised manner and infer keypoints and bounding boxes of multiple pigeons with that neural network. We use a state of the art tracker to track the individual pigeons in video sequences. I-MuPPET is tested quantitatively on single pigeon motion capture data, and we achieve comparable accuracy to state of the art 2D animal pose estimation methods in terms of Root Mean Square Error (RMSE). Additionally, we test I-MuPPET to estimate and track poses of multiple pigeons in video sequences with up to four pigeons and obtain stable and accurate results with up to 17 fps. To establish a baseline for future research, we perform a detailed quantitative tracking evaluation, which yields encouraging results.</dcterms:abstract> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Naik, Hemal</dc:contributor> <dc:creator>Naik, Hemal</dc:creator> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:creator>Waldmann, Urs</dc:creator> <dc:rights>terms-of-use</dc:rights> <dc:creator>Máté, Nagy</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43615"/> <dc:creator>Couzin, Iain D.</dc:creator> <dc:contributor>Deussen, Oliver</dc:contributor> <dc:creator>Goldlücke, Bastian</dc:creator> <dc:contributor>Kano, Fumihiro</dc:contributor> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/58700"/> </rdf:Description> </rdf:RDF>