Publikation: Visual Analytics : Foundations and Experiences in Malware Analysis
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
This chapter starts by providing some background in behavior-based malware analysis. Subsequently, it introduces VA and its main components based on the knowledge generation model for VA (Sacha et al., 2014). Then, it demonstrates the applicability of VA in in this subfield of software security with three projects that illustrate practical experience of VA methods: MalwareVis (Zhuo et al., 2012) supports network forensics and malware analysis by visually assessing TCP and DNS network streams. SEEM (Gove et al., 2014) allows visual comparison of multiple large attribute sets of malware samples, thereby enabling bulk classification. KAMAS (Wagner et al. 2017) is a knowledge-assisted visualization system for behavior-based malware forensics enabled by API calls and system call traces. Future directions in visual analytics for malware analysis conclude the chapter.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
WAGNER, Markus, Dominik SACHA, Alexander RIND, Fabian FISCHER, Robert LUH, Sebastian SCHRITTWIESER, Daniel A. KEIM, Wolfgang AIGNER, 2018. Visual Analytics : Foundations and Experiences in Malware Analysis. In: BEN OTHMANE, Lotfi, ed. and others. Empirical Research for Software Security : Foundations and Experience. Boca Raton: Taylor & Francis, 2018, pp. 139-171. ISBN 978-1-4987-7641-7BibTex
@incollection{Wagner2018Visua-41330, year={2018}, title={Visual Analytics : Foundations and Experiences in Malware Analysis}, isbn={978-1-4987-7641-7}, publisher={Taylor & Francis}, address={Boca Raton}, booktitle={Empirical Research for Software Security : Foundations and Experience}, pages={139--171}, editor={ben Othmane, Lotfi}, author={Wagner, Markus and Sacha, Dominik and Rind, Alexander and Fischer, Fabian and Luh, Robert and Schrittwieser, Sebastian and Keim, Daniel A. and Aigner, Wolfgang} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41330"> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:language>eng</dc:language> <dc:contributor>Fischer, Fabian</dc:contributor> <dc:contributor>Keim, Daniel A.</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-02-14T09:44:31Z</dc:date> <dcterms:issued>2018</dcterms:issued> <dcterms:abstract xml:lang="eng">This chapter starts by providing some background in behavior-based malware analysis. Subsequently, it introduces VA and its main components based on the knowledge generation model for VA (Sacha et al., 2014). Then, it demonstrates the applicability of VA in in this subfield of software security with three projects that illustrate practical experience of VA methods: MalwareVis (Zhuo et al., 2012) supports network forensics and malware analysis by visually assessing TCP and DNS network streams. SEEM (Gove et al., 2014) allows visual comparison of multiple large attribute sets of malware samples, thereby enabling bulk classification. KAMAS (Wagner et al. 2017) is a knowledge-assisted visualization system for behavior-based malware forensics enabled by API calls and system call traces. Future directions in visual analytics for malware analysis conclude the chapter.</dcterms:abstract> <dc:contributor>Rind, Alexander</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Luh, Robert</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:creator>Aigner, Wolfgang</dc:creator> <dc:creator>Sacha, Dominik</dc:creator> <dc:creator>Rind, Alexander</dc:creator> <dc:creator>Luh, Robert</dc:creator> <dc:creator>Wagner, Markus</dc:creator> <dcterms:title>Visual Analytics : Foundations and Experiences in Malware Analysis</dcterms:title> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/41330"/> <dc:contributor>Wagner, Markus</dc:contributor> <dc:creator>Keim, Daniel A.</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:contributor>Schrittwieser, Sebastian</dc:contributor> <dc:creator>Schrittwieser, Sebastian</dc:creator> <dc:creator>Fischer, Fabian</dc:creator> <dc:contributor>Aigner, Wolfgang</dc:contributor> <dc:contributor>Sacha, Dominik</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-02-14T09:44:31Z</dcterms:available> </rdf:Description> </rdf:RDF>