Publikation: An overview of the effects of algorithm use on judgmental biases affecting forecasting
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
In the realm of forecasting, judgmental biases often hinder efficiency and accuracy. Algorithms present a promising avenue for decision makers to enhance their forecasting performance. In this overview, we scrutinized the occurrence of the most relevant judgmental biases affecting forecasting across 162 papers, drawing from four recent reviews and papers published in forecasting journals, specifically focusing on the use of algorithms. Thirty-three of the 162 papers (20.4%) at least briefly mentioned one of twelve judgmental biases affecting forecasting. Our comprehensive analysis suggests that algorithms can potentially mitigate the adverse impacts of biases inherent in human judgment related to forecasting. Furthermore, these algorithms can leverage biases as an advantage, enhancing forecast accuracy. Intriguing revelations have surfaced, focusing mainly on four biases. By providing timely, relevant, well-performing, and consistent algorithmic advice, people can be effectively influenced to improve their forecasts, considering anchoring, availability, inconsistency, and confirmation bias. The findings highlight the gaps in the current research landscape and provide recommendations for practitioners. They also lay the groundwork for future studies on utilizing algorithms (e.g., large language models) and overcoming judgmental biases to improve forecasting performance.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
CHACON, Alvaro, Esther KAUFMANN, 2024. An overview of the effects of algorithm use on judgmental biases affecting forecasting. In: International Journal of Forecasting. Elsevier. ISSN 0169-2070. eISSN 1872-8200. Verfügbar unter: doi: 10.1016/j.ijforecast.2024.09.007BibTex
@article{Chacon2024-11overv-71637, year={2024}, doi={10.1016/j.ijforecast.2024.09.007}, title={An overview of the effects of algorithm use on judgmental biases affecting forecasting}, issn={0169-2070}, journal={International Journal of Forecasting}, author={Chacon, Alvaro and Kaufmann, Esther} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/71637"> <dcterms:title>An overview of the effects of algorithm use on judgmental biases affecting forecasting</dcterms:title> <dcterms:abstract>In the realm of forecasting, judgmental biases often hinder efficiency and accuracy. Algorithms present a promising avenue for decision makers to enhance their forecasting performance. In this overview, we scrutinized the occurrence of the most relevant judgmental biases affecting forecasting across 162 papers, drawing from four recent reviews and papers published in forecasting journals, specifically focusing on the use of algorithms. Thirty-three of the 162 papers (20.4%) at least briefly mentioned one of twelve judgmental biases affecting forecasting. Our comprehensive analysis suggests that algorithms can potentially mitigate the adverse impacts of biases inherent in human judgment related to forecasting. Furthermore, these algorithms can leverage biases as an advantage, enhancing forecast accuracy. Intriguing revelations have surfaced, focusing mainly on four biases. By providing timely, relevant, well-performing, and consistent algorithmic advice, people can be effectively influenced to improve their forecasts, considering anchoring, availability, inconsistency, and confirmation bias. The findings highlight the gaps in the current research landscape and provide recommendations for practitioners. They also lay the groundwork for future studies on utilizing algorithms (e.g., large language models) and overcoming judgmental biases to improve forecasting performance.</dcterms:abstract> <dc:creator>Chacon, Alvaro</dc:creator> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-12-11T08:47:06Z</dcterms:available> <dc:contributor>Chacon, Alvaro</dc:contributor> <dc:contributor>Kaufmann, Esther</dc:contributor> <dc:rights>Attribution 4.0 International</dc:rights> <dc:creator>Kaufmann, Esther</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-12-11T08:47:06Z</dc:date> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43"/> <dcterms:issued>2024-11</dcterms:issued> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/71637"/> <dc:language>eng</dc:language> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43"/> </rdf:Description> </rdf:RDF>