Publikation: Quantum Transducer Using a Parametric Driven-Dissipative Phase Transition
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
We study a dissipative Kerr resonator subject to both single- and two-photon detuned drives. Beyond a critical detuning threshold, the Kerr resonator exhibits a semiclassical first-order dissipative phase transition between two different steady states that are characterized by a π phase switch of the cavity field. This transition is shown to persist deep into the quantum limit of low photon numbers. Remarkably, the detuning frequency at which this transition occurs depends almost linearly on the amplitude of the single-photon drive. Based on this phase-switching feature, we devise a sensitive quantum transducer that translates the observed frequency of the parametric quantum phase transition to the detected single-photon amplitude signal. The effects of noise and temperature on the corresponding sensing protocol are addressed, and a realistic circuit-QED implementation is discussed.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
HEUGEL, Toni L., Matteo BIONDI, Oded ZILBERBERG, Ramasubramanian CHITRA, 2019. Quantum Transducer Using a Parametric Driven-Dissipative Phase Transition. In: Physical Review Letters. American Physical Society (APS). 2019, 123(17), 173601. ISSN 0031-9007. eISSN 1079-7114. Available under: doi: 10.1103/PhysRevLett.123.173601BibTex
@article{Heugel2019-10-25Quant-54942, year={2019}, doi={10.1103/PhysRevLett.123.173601}, title={Quantum Transducer Using a Parametric Driven-Dissipative Phase Transition}, number={17}, volume={123}, issn={0031-9007}, journal={Physical Review Letters}, author={Heugel, Toni L. and Biondi, Matteo and Zilberberg, Oded and Chitra, Ramasubramanian}, note={Article Number: 173601} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/54942"> <dcterms:issued>2019-10-25</dcterms:issued> <dc:contributor>Heugel, Toni L.</dc:contributor> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/54942"/> <dc:contributor>Chitra, Ramasubramanian</dc:contributor> <dc:language>eng</dc:language> <dc:contributor>Biondi, Matteo</dc:contributor> <dc:rights>terms-of-use</dc:rights> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:title>Quantum Transducer Using a Parametric Driven-Dissipative Phase Transition</dcterms:title> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <dc:creator>Heugel, Toni L.</dc:creator> <dcterms:abstract xml:lang="eng">We study a dissipative Kerr resonator subject to both single- and two-photon detuned drives. Beyond a critical detuning threshold, the Kerr resonator exhibits a semiclassical first-order dissipative phase transition between two different steady states that are characterized by a π phase switch of the cavity field. This transition is shown to persist deep into the quantum limit of low photon numbers. Remarkably, the detuning frequency at which this transition occurs depends almost linearly on the amplitude of the single-photon drive. Based on this phase-switching feature, we devise a sensitive quantum transducer that translates the observed frequency of the parametric quantum phase transition to the detected single-photon amplitude signal. The effects of noise and temperature on the corresponding sensing protocol are addressed, and a realistic circuit-QED implementation is discussed.</dcterms:abstract> <dc:contributor>Zilberberg, Oded</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <dc:creator>Biondi, Matteo</dc:creator> <dc:creator>Chitra, Ramasubramanian</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-09-21T13:13:41Z</dcterms:available> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:creator>Zilberberg, Oded</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-09-21T13:13:41Z</dc:date> </rdf:Description> </rdf:RDF>