Publikation:

Samply Stream API : the AI-enhanced method for real-time event data streaming

Lade...
Vorschaubild

Dateien

Shevchenko_2-100i3ydrwq38d3.PDF
Shevchenko_2-100i3ydrwq38d3.PDFGröße: 1.06 MBDownloads: 5

Datum

2025

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Link zur Lizenz

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Hybrid
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Behavior Research Methods. Springer Science and Business Media LLC. 2025, 57(4), 119. eISSN 1554-3528. Verfügbar unter: doi: 10.3758/s13428-025-02634-1

Zusammenfassung

This manuscript introduces a novel method for conducting behavioral and social research by streaming real-time information to participants and manipulating content for experimental purposes via AI. We present an extension of the Samply software, which facilitates the integration of event-related data with mobile surveys and experiments. To assess the feasibility of this method, we conducted an experiment where news headlines were modified by a Chat-GPT algorithm and streamed to participants via the Samply Stream API and mobile push notifications. Feedback from participants indicated that most did not experience technical problems. There was no significant difference in readability across original, paraphrased, and misinformation-injected news conditions, with only 1.2% of all news items reported as unreadable. Participants reported significantly less familiarity with misinformation-injected news (84% unfamiliarity) compared to original and paraphrased news (73% unfamiliarity), suggesting successful manipulation of information without compromising readability. Dropout and non-response rates were comparable to those in other experience sampling studies. The streaming method offers significant potential for various applications, including public opinion research, healthcare, marketing, and environmental monitoring. By enabling the real-time collection of contextually relevant data, this method has the potential to enhance the external validity of behavioral research and provides a powerful tool for studying human behavior in naturalistic settings.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
150 Psychologie

Schlagwörter

Experience sampling method, Real-time data streaming, Samply Stream API, Mobile surveys, AI-enhanced method

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690SHEVCHENKO, Yury, Ulf-Dietrich REIPS, 2025. Samply Stream API : the AI-enhanced method for real-time event data streaming. In: Behavior Research Methods. Springer Science and Business Media LLC. 2025, 57(4), 119. eISSN 1554-3528. Verfügbar unter: doi: 10.3758/s13428-025-02634-1
BibTex
@article{Shevchenko2025-03-17Sampl-72762,
  title={Samply Stream API : the AI-enhanced method for real-time event data streaming},
  year={2025},
  doi={10.3758/s13428-025-02634-1},
  number={4},
  volume={57},
  journal={Behavior Research Methods},
  author={Shevchenko, Yury and Reips, Ulf-Dietrich},
  note={Article Number: 119}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/72762">
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/72762/1/Shevchenko_2-100i3ydrwq38d3.PDF"/>
    <dcterms:title>Samply Stream API : the AI-enhanced method for real-time event data streaming</dcterms:title>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/72762/1/Shevchenko_2-100i3ydrwq38d3.PDF"/>
    <dc:contributor>Reips, Ulf-Dietrich</dc:contributor>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/72762"/>
    <dcterms:abstract>This manuscript introduces a novel method for conducting behavioral and social research by streaming real-time information to participants and manipulating content for experimental purposes via AI. We present an extension of the Samply software, which facilitates the integration of event-related data with mobile surveys and experiments. To assess the feasibility of this method, we conducted an experiment where news headlines were modified by a Chat-GPT algorithm and streamed to participants via the Samply Stream API and mobile push notifications. Feedback from participants indicated that most did not experience technical problems. There was no significant difference in readability across original, paraphrased, and misinformation-injected news conditions, with only 1.2% of all news items reported as unreadable. Participants reported significantly less familiarity with misinformation-injected news (84% unfamiliarity) compared to original and paraphrased news (73% unfamiliarity), suggesting successful manipulation of information without compromising readability. Dropout and non-response rates were comparable to those in other experience sampling studies. The streaming method offers significant potential for various applications, including public opinion research, healthcare, marketing, and environmental monitoring. By enabling the real-time collection of contextually relevant data, this method has the potential to enhance the external validity of behavioral research and provides a powerful tool for studying human behavior in naturalistic settings.</dcterms:abstract>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/>
    <dc:creator>Reips, Ulf-Dietrich</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43"/>
    <dc:rights>Attribution 4.0 International</dc:rights>
    <dcterms:issued>2025-03-17</dcterms:issued>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:language>eng</dc:language>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-03-24T08:27:05Z</dcterms:available>
    <dc:creator>Shevchenko, Yury</dc:creator>
    <dc:contributor>Shevchenko, Yury</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-03-24T08:27:05Z</dc:date>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen