Publikation: On a class of martingale problems on Banach spaces
Lade...
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2013
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Electronic Journal of Probability. 2013, 18, 104. eISSN 1083-6489. Available under: doi: 10.1214/EJP.v18-2924
Zusammenfassung
We introduce the local martingale problem associated to semilinear stochastic evolution equations driven by a cylindrical Wiener process and establish a one-to-one correspondence between solutions of the martingale problem and (analytically) weak solutions of the stochastic equation. We also prove that the solutions of well-posed equations are strong Markov processes. We apply our results to semilinear stochastic equations with additive noise where the semilinear term is merely measurable and to stochastic reaction-diffusion equations with Hölder continuous multiplicative noise.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
Local Martingale problem; Strong Markov property; Stochastic partial differential equations
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690
KUNZE, Markus, 2013. On a class of martingale problems on Banach spaces. In: Electronic Journal of Probability. 2013, 18, 104. eISSN 1083-6489. Available under: doi: 10.1214/EJP.v18-2924BibTex
@article{Kunze2013class-41251, year={2013}, doi={10.1214/EJP.v18-2924}, title={On a class of martingale problems on Banach spaces}, volume={18}, journal={Electronic Journal of Probability}, author={Kunze, Markus}, note={Article Number: 104} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41251"> <dc:contributor>Kunze, Markus</dc:contributor> <dcterms:abstract xml:lang="eng">We introduce the local martingale problem associated to semilinear stochastic evolution equations driven by a cylindrical Wiener process and establish a one-to-one correspondence between solutions of the martingale problem and (analytically) weak solutions of the stochastic equation. We also prove that the solutions of well-posed equations are strong Markov processes. We apply our results to semilinear stochastic equations with additive noise where the semilinear term is merely measurable and to stochastic reaction-diffusion equations with Hölder continuous multiplicative noise.</dcterms:abstract> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-02-06T13:17:55Z</dcterms:available> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-02-06T13:17:55Z</dc:date> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/41251"/> <dc:creator>Kunze, Markus</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:issued>2013</dcterms:issued> <dcterms:title>On a class of martingale problems on Banach spaces</dcterms:title> <dc:language>eng</dc:language> </rdf:Description> </rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein