Publikation:

Morphing Contact Representations of Graphs

Lade...
Vorschaubild

Dateien

Angelini_2-zrihd4nlcfc35.pdf
Angelini_2-zrihd4nlcfc35.pdfGröße: 968.33 KBDownloads: 29

Datum

2019

Autor:innen

Angelini, Patrizio
Chaplick, Steven
Da Lozzo, Giordano
Roselli, Vincenzo

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Link zur Lizenz

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Bookpart
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

BAREQUET, Gill, ed., Yusu WANG, ed.. 35th International Symposium on Computational Geometry (SoCG 2019). Wadern: Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. LIPIcs : Leibniz International Proceedings in Informatics. 129. eISSN 1868-8969. Available under: doi: 10.4230/LIPIcs.SoCG.2019.10

Zusammenfassung

We consider the problem of morphing between contact representations of a plane graph. In a contact representation of a plane graph, vertices are realized by internally disjoint elements from a family of connected geometric objects. Two such elements touch if and only if their corresponding vertices are adjacent. These touchings also induce the same embedding as in the graph. In a morph between two contact representations we insist that at each time step (continuously throughout the morph) we have a contact representation of the same type. We focus on the case when the geometric objects are triangles that are the lower-right half of axis-parallel rectangles. Such RT-representations exist for every plane graph and right triangles are one of the simplest families of shapes supporting this property. Thus, they provide a natural case to study regarding morphs of contact representations of plane graphs. We study piecewise linear morphs, where each step is a linear morph moving the endpoints of each triangle at constant speed along straight-line trajectories. We provide a polynomial-time algorithm that decides whether there is a piecewise linear morph between two RT-representations of a plane triangulation, and, if so, computes a morph with a quadratic number of linear morphs. As a direct consequence, we obtain that for 4-connected plane triangulations there is a morph between every pair of RT-representations where the ``top-most'' triangle in both representations corresponds to the same vertex. This shows that the realization space of such RT-representations of any 4-connected plane triangulation forms a connected set.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

35th International Symposium on Computational Geometry (SoCG 2019), 18. Juni 2019 - 21. Juni 2019, Portland, United States
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690ANGELINI, Patrizio, Steven CHAPLICK, Sabine CORNELSEN, Giordano DA LOZZO, Vincenzo ROSELLI, 2019. Morphing Contact Representations of Graphs. 35th International Symposium on Computational Geometry (SoCG 2019). Portland, United States, 18. Juni 2019 - 21. Juni 2019. In: BAREQUET, Gill, ed., Yusu WANG, ed.. 35th International Symposium on Computational Geometry (SoCG 2019). Wadern: Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. LIPIcs : Leibniz International Proceedings in Informatics. 129. eISSN 1868-8969. Available under: doi: 10.4230/LIPIcs.SoCG.2019.10
BibTex
@inproceedings{Angelini2019Morph-45596,
  year={2019},
  doi={10.4230/LIPIcs.SoCG.2019.10},
  title={Morphing Contact Representations of Graphs},
  number={129},
  publisher={Schloss Dagstuhl - Leibniz-Zentrum für Informatik},
  address={Wadern},
  series={LIPIcs : Leibniz International Proceedings in Informatics},
  booktitle={35th International Symposium on Computational Geometry (SoCG 2019)},
  editor={Barequet, Gill and Wang, Yusu},
  author={Angelini, Patrizio and Chaplick, Steven and Cornelsen, Sabine and Da Lozzo, Giordano and Roselli, Vincenzo}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/45596">
    <dc:contributor>Da Lozzo, Giordano</dc:contributor>
    <dc:creator>Chaplick, Steven</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-04-05T12:30:58Z</dc:date>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/45596/1/Angelini_2-zrihd4nlcfc35.pdf"/>
    <dc:contributor>Cornelsen, Sabine</dc:contributor>
    <dc:creator>Angelini, Patrizio</dc:creator>
    <dc:contributor>Chaplick, Steven</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:abstract xml:lang="eng">We consider the problem of morphing between contact representations of a plane graph.  In a contact representation of a plane graph, vertices are realized by internally disjoint elements from a family of connected geometric objects. Two such elements touch if and only if their corresponding vertices are adjacent.  These touchings also induce the same embedding as in the graph.  In a morph between two contact representations we insist that at each time step (continuously throughout the morph) we have a contact representation of the same type. We focus on the case when the geometric objects are triangles that are the lower-right half of axis-parallel rectangles.  Such RT-representations exist for every plane graph and right triangles are one of the simplest families of shapes supporting this property.  Thus, they provide a natural case to study regarding morphs of contact representations of plane graphs. We study piecewise linear morphs, where each step is a linear morph moving the endpoints of each triangle at constant speed along straight-line trajectories.  We provide a polynomial-time algorithm that decides whether there is a piecewise linear morph between two RT-representations of a plane triangulation, and, if so, computes a morph with a quadratic number of linear morphs.  As a direct consequence, we obtain that for 4-connected plane triangulations there is a morph between every pair of RT-representations where the ``top-most'' triangle in both representations corresponds to the same vertex.  This shows that the realization space of such RT-representations of any 4-connected plane triangulation forms a connected set.</dcterms:abstract>
    <dcterms:title>Morphing Contact Representations of Graphs</dcterms:title>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/45596/1/Angelini_2-zrihd4nlcfc35.pdf"/>
    <dc:creator>Cornelsen, Sabine</dc:creator>
    <dc:creator>Da Lozzo, Giordano</dc:creator>
    <dc:language>eng</dc:language>
    <dc:rights>Attribution 4.0 International</dc:rights>
    <dc:contributor>Roselli, Vincenzo</dc:contributor>
    <dc:contributor>Angelini, Patrizio</dc:contributor>
    <dc:creator>Roselli, Vincenzo</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-04-05T12:30:58Z</dcterms:available>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/45596"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:issued>2019</dcterms:issued>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen