Publikation: CUDAS : Distortion-Aware Saliency Benchmark
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Visual saliency prediction remains an academic challenge due to the diversity and complexity of natural scenes as well as the scarcity of eye movement data on where people look in images. In many practical applications, digital images are inevitably subject to distortions, such as those caused by acquisition, editing, compression or transmission. A great deal of attention has been paid to predicting the saliency of distortion-free pristine images, but little attention has been given to understanding the impact of visual distortions on saliency prediction. In this paper, we first present the CUDAS database - a new distortion-aware saliency benchmark, where eye-tracking data was collected for 60 pristine images and their corresponding 540 distorted formats. We then conduct a statistical evaluation to reveal the behaviour of state-of-the-art saliency prediction models on distorted images and provide insights on building an effective model for distortion-aware saliency prediction. The new database is made publicly available to the research community.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
ZHAO, Xin, Jianxun LOU, Xinbo WU, Yingying WU, Lucie LÉVÊQUE, Xiaochang LIU, Pengfei GUO, Yipeng QIN, Hanhe LIN, Dietmar SAUPE, Hantao LIU, 2023. CUDAS : Distortion-Aware Saliency Benchmark. In: IEEE Access. IEEE. 2023, 11, pp. 58025-58036. eISSN 2169-3536. Available under: doi: 10.1109/access.2023.3283344BibTex
@article{Zhao2023CUDAS-67086, year={2023}, doi={10.1109/access.2023.3283344}, title={CUDAS : Distortion-Aware Saliency Benchmark}, volume={11}, journal={IEEE Access}, pages={58025--58036}, author={Zhao, Xin and Lou, Jianxun and Wu, Xinbo and Wu, Yingying and Lévêque, Lucie and Liu, Xiaochang and Guo, Pengfei and Qin, Yipeng and Lin, Hanhe and Saupe, Dietmar and Liu, Hantao} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/67086"> <dc:creator>Lévêque, Lucie</dc:creator> <dc:contributor>Wu, Xinbo</dc:contributor> <dc:contributor>Saupe, Dietmar</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-06-12T07:09:54Z</dcterms:available> <dc:creator>Zhao, Xin</dc:creator> <dc:contributor>Lou, Jianxun</dc:contributor> <dc:contributor>Liu, Xiaochang</dc:contributor> <dc:creator>Guo, Pengfei</dc:creator> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/67086/1/Zhao_2-zfiyul4ms70x2.pdf"/> <dc:creator>Wu, Xinbo</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-06-12T07:09:54Z</dc:date> <dc:creator>Lou, Jianxun</dc:creator> <dc:contributor>Qin, Yipeng</dc:contributor> <dc:creator>Wu, Yingying</dc:creator> <dcterms:title>CUDAS : Distortion-Aware Saliency Benchmark</dcterms:title> <dc:contributor>Lin, Hanhe</dc:contributor> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/4.0/"/> <dc:contributor>Liu, Hantao</dc:contributor> <dc:contributor>Guo, Pengfei</dc:contributor> <dc:creator>Lin, Hanhe</dc:creator> <dc:creator>Liu, Xiaochang</dc:creator> <dc:rights>Attribution-NonCommercial-NoDerivatives 4.0 International</dc:rights> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/67086/1/Zhao_2-zfiyul4ms70x2.pdf"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Liu, Hantao</dc:creator> <dc:contributor>Wu, Yingying</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:issued>2023</dcterms:issued> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/67086"/> <dc:creator>Qin, Yipeng</dc:creator> <dc:contributor>Zhao, Xin</dc:contributor> <dcterms:abstract>Visual saliency prediction remains an academic challenge due to the diversity and complexity of natural scenes as well as the scarcity of eye movement data on where people look in images. In many practical applications, digital images are inevitably subject to distortions, such as those caused by acquisition, editing, compression or transmission. A great deal of attention has been paid to predicting the saliency of distortion-free pristine images, but little attention has been given to understanding the impact of visual distortions on saliency prediction. In this paper, we first present the CUDAS database - a new distortion-aware saliency benchmark, where eye-tracking data was collected for 60 pristine images and their corresponding 540 distorted formats. We then conduct a statistical evaluation to reveal the behaviour of state-of-the-art saliency prediction models on distorted images and provide insights on building an effective model for distortion-aware saliency prediction. The new database is made publicly available to the research community.</dcterms:abstract> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Saupe, Dietmar</dc:creator> <dc:language>eng</dc:language> <dc:contributor>Lévêque, Lucie</dc:contributor> </rdf:Description> </rdf:RDF>