An Image-Based Approach to Visual Feature Space Analysis

Lade...
Vorschaubild
Dateien
wscg08som.pdf
wscg08som.pdfGröße: 2.79 MBDownloads: 91
Datum
2008
Autor:innen
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
EU-Projektnummer
DFG-Projektnummer
Forschungsförderung
Projekt
Open Access-Veröffentlichung
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published
Erschienen in
16. Int. Conference in Central Europe on Computer Graphics, Visualization and Computer Vision (WSCG ' 2008), Plzen, Czech Republic, 2008. 2008
Zusammenfassung

Methods for management and analysis of non-standard data often rely on the so-called feature vector approach. The technique describes complex data instances by vectors of characteristic numeric values which allow to index the data and to calculate similarity scores between the data elements. Thereby, feature vectors often are a key ingredient to intelligent data analysis algorithms including instances of clustering, classification, and similarity search algorithms. However, identification of appropriate feature vectors for a given database of a given data type is a challenging task. Determining good feature vector extractors usually involves benchmarks relying on supervised information, which makes it an expensive and data dependent process. In this paper, we address the feature selection problem by a novel approach based on analysis of certain feature space images. We develop two image-based analysis techniques for the automatic discrimination power analysis of feature spaces. We evaluate the techniques on a comprehensive feature selection benchmark, demonstrating the effectiveness of our analysis and its potential toward automatically addressing the feature selection problem.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Visual Analytics, Feature Vectors, Automatic Feature Selection, Self-Organizing Maps
Konferenz
WSCG, 2008, Plzen, Czech Republic
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690SCHRECK, Tobias, Jörn SCHNEIDEWIND, Daniel A. KEIM, 2008. An Image-Based Approach to Visual Feature Space Analysis. WSCG. Plzen, Czech Republic, 2008. In: 16. Int. Conference in Central Europe on Computer Graphics, Visualization and Computer Vision (WSCG ' 2008), Plzen, Czech Republic, 2008. 2008
BibTex
@inproceedings{Schreck2008Image-5470,
  year={2008},
  title={An Image-Based Approach to Visual Feature Space Analysis},
  booktitle={16. Int. Conference in Central Europe on Computer Graphics, Visualization and Computer Vision (WSCG ' 2008), Plzen, Czech Republic, 2008},
  author={Schreck, Tobias and Schneidewind, Jörn and Keim, Daniel A.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/5470">
    <dc:rights>Attribution-NonCommercial-NoDerivs 2.0 Generic</dc:rights>
    <dcterms:abstract xml:lang="eng">Methods for management and analysis of non-standard data often rely on the so-called feature vector approach. The technique describes complex data instances by vectors of characteristic numeric values which allow to index the data and to calculate similarity scores between the data elements. Thereby, feature vectors often are a key ingredient to intelligent data analysis algorithms including instances of clustering, classification, and similarity search algorithms. However, identification of appropriate feature vectors for a given database of a given data type is a challenging task. Determining good feature vector extractors usually involves benchmarks relying on supervised information, which makes it an expensive and data dependent process. In this paper, we address the feature selection problem by a novel approach based on analysis of certain feature space images. We develop two image-based analysis techniques for the automatic discrimination power analysis of feature spaces. We evaluate the techniques on a comprehensive feature selection benchmark, demonstrating the effectiveness of our analysis and its potential toward automatically addressing the feature selection problem.</dcterms:abstract>
    <dc:contributor>Schneidewind, Jörn</dc:contributor>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/2.0/"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T15:55:40Z</dcterms:available>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Keim, Daniel A.</dc:contributor>
    <dcterms:issued>2008</dcterms:issued>
    <dc:creator>Schreck, Tobias</dc:creator>
    <dc:format>application/pdf</dc:format>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5470/1/wscg08som.pdf"/>
    <dcterms:title>An Image-Based Approach to Visual Feature Space Analysis</dcterms:title>
    <dc:creator>Keim, Daniel A.</dc:creator>
    <dc:contributor>Schreck, Tobias</dc:contributor>
    <dc:creator>Schneidewind, Jörn</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T15:55:40Z</dc:date>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:language>eng</dc:language>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5470/1/wscg08som.pdf"/>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/5470"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:bibliographicCitation>First publ. in: 16. Int. Conference in Central Europe on Computer Graphics, Visualization and Computer Vision (WSCG'2008), Plzen, Czech Republic, 2008</dcterms:bibliographicCitation>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet