An Image-Based Approach to Visual Feature Space Analysis
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
EU-Projektnummer
DFG-Projektnummer
Projekt
Open Access-Veröffentlichung
Sammlungen
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
unikn.publication.listelement.citation.prefix.version.undefined
Zusammenfassung
Methods for management and analysis of non-standard data often rely on the so-called feature vector approach. The technique describes complex data instances by vectors of characteristic numeric values which allow to index the data and to calculate similarity scores between the data elements. Thereby, feature vectors often are a key ingredient to intelligent data analysis algorithms including instances of clustering, classification, and similarity search algorithms. However, identification of appropriate feature vectors for a given database of a given data type is a challenging task. Determining good feature vector extractors usually involves benchmarks relying on supervised information, which makes it an expensive and data dependent process. In this paper, we address the feature selection problem by a novel approach based on analysis of certain feature space images. We develop two image-based analysis techniques for the automatic discrimination power analysis of feature spaces. We evaluate the techniques on a comprehensive feature selection benchmark, demonstrating the effectiveness of our analysis and its potential toward automatically addressing the feature selection problem.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
SCHRECK, Tobias, Jörn SCHNEIDEWIND, Daniel A. KEIM, 2008. An Image-Based Approach to Visual Feature Space Analysis. WSCG. Plzen, Czech Republic, 2008. In: 16. Int. Conference in Central Europe on Computer Graphics, Visualization and Computer Vision (WSCG ' 2008), Plzen, Czech Republic, 2008. 2008BibTex
@inproceedings{Schreck2008Image-5470, year={2008}, title={An Image-Based Approach to Visual Feature Space Analysis}, booktitle={16. Int. Conference in Central Europe on Computer Graphics, Visualization and Computer Vision (WSCG ' 2008), Plzen, Czech Republic, 2008}, author={Schreck, Tobias and Schneidewind, Jörn and Keim, Daniel A.} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/5470"> <dc:rights>Attribution-NonCommercial-NoDerivs 2.0 Generic</dc:rights> <dcterms:abstract xml:lang="eng">Methods for management and analysis of non-standard data often rely on the so-called feature vector approach. The technique describes complex data instances by vectors of characteristic numeric values which allow to index the data and to calculate similarity scores between the data elements. Thereby, feature vectors often are a key ingredient to intelligent data analysis algorithms including instances of clustering, classification, and similarity search algorithms. However, identification of appropriate feature vectors for a given database of a given data type is a challenging task. Determining good feature vector extractors usually involves benchmarks relying on supervised information, which makes it an expensive and data dependent process. In this paper, we address the feature selection problem by a novel approach based on analysis of certain feature space images. We develop two image-based analysis techniques for the automatic discrimination power analysis of feature spaces. We evaluate the techniques on a comprehensive feature selection benchmark, demonstrating the effectiveness of our analysis and its potential toward automatically addressing the feature selection problem.</dcterms:abstract> <dc:contributor>Schneidewind, Jörn</dc:contributor> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/2.0/"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T15:55:40Z</dcterms:available> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Keim, Daniel A.</dc:contributor> <dcterms:issued>2008</dcterms:issued> <dc:creator>Schreck, Tobias</dc:creator> <dc:format>application/pdf</dc:format> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5470/1/wscg08som.pdf"/> <dcterms:title>An Image-Based Approach to Visual Feature Space Analysis</dcterms:title> <dc:creator>Keim, Daniel A.</dc:creator> <dc:contributor>Schreck, Tobias</dc:contributor> <dc:creator>Schneidewind, Jörn</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T15:55:40Z</dc:date> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:language>eng</dc:language> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5470/1/wscg08som.pdf"/> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/5470"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:bibliographicCitation>First publ. in: 16. Int. Conference in Central Europe on Computer Graphics, Visualization and Computer Vision (WSCG'2008), Plzen, Czech Republic, 2008</dcterms:bibliographicCitation> </rdf:Description> </rdf:RDF>