Publikation:

An Image-Based Approach to Visual Feature Space Analysis

Lade...
Vorschaubild

Dateien

wscg08som.pdf
wscg08som.pdfGröße: 2.79 MBDownloads: 117

Datum

2008

Autor:innen

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

16. Int. Conference in Central Europe on Computer Graphics, Visualization and Computer Vision (WSCG ' 2008), Plzen, Czech Republic, 2008. 2008

Zusammenfassung

Methods for management and analysis of non-standard data often rely on the so-called feature vector approach. The technique describes complex data instances by vectors of characteristic numeric values which allow to index the data and to calculate similarity scores between the data elements. Thereby, feature vectors often are a key ingredient to intelligent data analysis algorithms including instances of clustering, classification, and similarity search algorithms. However, identification of appropriate feature vectors for a given database of a given data type is a challenging task. Determining good feature vector extractors usually involves benchmarks relying on supervised information, which makes it an expensive and data dependent process. In this paper, we address the feature selection problem by a novel approach based on analysis of certain feature space images. We develop two image-based analysis techniques for the automatic discrimination power analysis of feature spaces. We evaluate the techniques on a comprehensive feature selection benchmark, demonstrating the effectiveness of our analysis and its potential toward automatically addressing the feature selection problem.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Visual Analytics, Feature Vectors, Automatic Feature Selection, Self-Organizing Maps

Konferenz

WSCG, 2008, Plzen, Czech Republic
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690SCHRECK, Tobias, Jörn SCHNEIDEWIND, Daniel A. KEIM, 2008. An Image-Based Approach to Visual Feature Space Analysis. WSCG. Plzen, Czech Republic, 2008. In: 16. Int. Conference in Central Europe on Computer Graphics, Visualization and Computer Vision (WSCG ' 2008), Plzen, Czech Republic, 2008. 2008
BibTex
@inproceedings{Schreck2008Image-5470,
  year={2008},
  title={An Image-Based Approach to Visual Feature Space Analysis},
  booktitle={16. Int. Conference in Central Europe on Computer Graphics, Visualization and Computer Vision (WSCG ' 2008), Plzen, Czech Republic, 2008},
  author={Schreck, Tobias and Schneidewind, Jörn and Keim, Daniel A.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/5470">
    <dc:rights>Attribution-NonCommercial-NoDerivs 2.0 Generic</dc:rights>
    <dcterms:abstract xml:lang="eng">Methods for management and analysis of non-standard data often rely on the so-called feature vector approach. The technique describes complex data instances by vectors of characteristic numeric values which allow to index the data and to calculate similarity scores between the data elements. Thereby, feature vectors often are a key ingredient to intelligent data analysis algorithms including instances of clustering, classification, and similarity search algorithms. However, identification of appropriate feature vectors for a given database of a given data type is a challenging task. Determining good feature vector extractors usually involves benchmarks relying on supervised information, which makes it an expensive and data dependent process. In this paper, we address the feature selection problem by a novel approach based on analysis of certain feature space images. We develop two image-based analysis techniques for the automatic discrimination power analysis of feature spaces. We evaluate the techniques on a comprehensive feature selection benchmark, demonstrating the effectiveness of our analysis and its potential toward automatically addressing the feature selection problem.</dcterms:abstract>
    <dc:contributor>Schneidewind, Jörn</dc:contributor>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/2.0/"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T15:55:40Z</dcterms:available>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Keim, Daniel A.</dc:contributor>
    <dcterms:issued>2008</dcterms:issued>
    <dc:creator>Schreck, Tobias</dc:creator>
    <dc:format>application/pdf</dc:format>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5470/1/wscg08som.pdf"/>
    <dcterms:title>An Image-Based Approach to Visual Feature Space Analysis</dcterms:title>
    <dc:creator>Keim, Daniel A.</dc:creator>
    <dc:contributor>Schreck, Tobias</dc:contributor>
    <dc:creator>Schneidewind, Jörn</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T15:55:40Z</dc:date>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:language>eng</dc:language>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5470/1/wscg08som.pdf"/>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/5470"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:bibliographicCitation>First publ. in: 16. Int. Conference in Central Europe on Computer Graphics, Visualization and Computer Vision (WSCG'2008), Plzen, Czech Republic, 2008</dcterms:bibliographicCitation>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen