Publikation:

Enabling News Consumers to View and Understand Biased News Coverage : A Study on the Perception and Visualization of Media Bias

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2020

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

JCDL '20 : Proceedings of the ACM/IEEE Joint Conference on Digital Libraries in 2020. New York, NY: ACM, 2020, pp. 389-392. ISBN 978-1-4503-7585-6. Available under: doi: 10.1145/3383583.3398619

Zusammenfassung

Traditional media outlets are known to report political news in a biased way, potentially affecting the political beliefs of the audience and even altering their voting behaviors. Many researchers focus on automatically detecting and identifying media bias in the news, but only very few studies exist that systematically analyze how theses biases can be best visualized and communicated. We create three manually annotated datasets and test varying visualization strategies. The results show no strong effects of becoming aware of the bias of the treatment groups compared to the control group, although a visualization of hand-annotated bias communicated bias in-stances more effectively than a framing visualization. Showing participants an overview page, which opposes different viewpoints on the same topic, does not yield differences in respondents' bias perception. Using a multilevel model, we find that perceived journalist bias is significantly related to perceived political extremeness and impartiality of the article.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
320 Politik

Schlagwörter

News bias, news slant, bias visualization, perception of news

Konferenz

JCDL '20 : ACM/IEEE Joint Conference on Digital Libraries in 2020 (Virtual Event), 1. Aug. 2020 - 5. Aug. 2020, Wuhan, China
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690SPINDE, Timo, Felix HAMBORG, Karsten DONNAY, Angelica BECERRA, Bela GIPP, 2020. Enabling News Consumers to View and Understand Biased News Coverage : A Study on the Perception and Visualization of Media Bias. JCDL '20 : ACM/IEEE Joint Conference on Digital Libraries in 2020 (Virtual Event). Wuhan, China, 1. Aug. 2020 - 5. Aug. 2020. In: JCDL '20 : Proceedings of the ACM/IEEE Joint Conference on Digital Libraries in 2020. New York, NY: ACM, 2020, pp. 389-392. ISBN 978-1-4503-7585-6. Available under: doi: 10.1145/3383583.3398619
BibTex
@inproceedings{Spinde2020Enabl-51333,
  year={2020},
  doi={10.1145/3383583.3398619},
  title={Enabling News Consumers to View and Understand Biased News Coverage : A Study on the Perception and Visualization of Media Bias},
  isbn={978-1-4503-7585-6},
  publisher={ACM},
  address={New York, NY},
  booktitle={JCDL '20 : Proceedings of the ACM/IEEE Joint Conference on Digital Libraries in 2020},
  pages={389--392},
  author={Spinde, Timo and Hamborg, Felix and Donnay, Karsten and Becerra, Angelica and Gipp, Bela}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/51333">
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:contributor>Spinde, Timo</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-10-13T13:30:30Z</dcterms:available>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/51333"/>
    <dc:language>eng</dc:language>
    <dc:contributor>Becerra, Angelica</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43613"/>
    <dc:contributor>Donnay, Karsten</dc:contributor>
    <dcterms:abstract xml:lang="eng">Traditional media outlets are known to report political news in a biased way, potentially affecting the political beliefs of the audience and even altering their voting behaviors. Many researchers focus on automatically detecting and identifying media bias in the news, but only very few studies exist that systematically analyze how theses biases can be best visualized and communicated. We create three manually annotated datasets and test varying visualization strategies. The results show no strong effects of becoming aware of the bias of the treatment groups compared to the control group, although a visualization of hand-annotated bias communicated bias in-stances more effectively than a framing visualization. Showing participants an overview page, which opposes different viewpoints on the same topic, does not yield differences in respondents' bias perception. Using a multilevel model, we find that perceived journalist bias is significantly related to perceived political extremeness and impartiality of the article.</dcterms:abstract>
    <dc:creator>Donnay, Karsten</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42"/>
    <dc:creator>Spinde, Timo</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:rights>terms-of-use</dc:rights>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-10-13T13:30:30Z</dc:date>
    <dc:creator>Hamborg, Felix</dc:creator>
    <dc:creator>Becerra, Angelica</dc:creator>
    <dcterms:title>Enabling News Consumers to View and Understand Biased News Coverage : A Study on the Perception and Visualization of Media Bias</dcterms:title>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43613"/>
    <dc:contributor>Hamborg, Felix</dc:contributor>
    <dc:contributor>Gipp, Bela</dc:contributor>
    <dc:creator>Gipp, Bela</dc:creator>
    <dcterms:issued>2020</dcterms:issued>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen