Publikation: Enabling News Consumers to View and Understand Biased News Coverage : A Study on the Perception and Visualization of Media Bias
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Traditional media outlets are known to report political news in a biased way, potentially affecting the political beliefs of the audience and even altering their voting behaviors. Many researchers focus on automatically detecting and identifying media bias in the news, but only very few studies exist that systematically analyze how theses biases can be best visualized and communicated. We create three manually annotated datasets and test varying visualization strategies. The results show no strong effects of becoming aware of the bias of the treatment groups compared to the control group, although a visualization of hand-annotated bias communicated bias in-stances more effectively than a framing visualization. Showing participants an overview page, which opposes different viewpoints on the same topic, does not yield differences in respondents' bias perception. Using a multilevel model, we find that perceived journalist bias is significantly related to perceived political extremeness and impartiality of the article.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
SPINDE, Timo, Felix HAMBORG, Karsten DONNAY, Angelica BECERRA, Bela GIPP, 2020. Enabling News Consumers to View and Understand Biased News Coverage : A Study on the Perception and Visualization of Media Bias. JCDL '20 : ACM/IEEE Joint Conference on Digital Libraries in 2020 (Virtual Event). Wuhan, China, 1. Aug. 2020 - 5. Aug. 2020. In: JCDL '20 : Proceedings of the ACM/IEEE Joint Conference on Digital Libraries in 2020. New York, NY: ACM, 2020, pp. 389-392. ISBN 978-1-4503-7585-6. Available under: doi: 10.1145/3383583.3398619BibTex
@inproceedings{Spinde2020Enabl-51333, year={2020}, doi={10.1145/3383583.3398619}, title={Enabling News Consumers to View and Understand Biased News Coverage : A Study on the Perception and Visualization of Media Bias}, isbn={978-1-4503-7585-6}, publisher={ACM}, address={New York, NY}, booktitle={JCDL '20 : Proceedings of the ACM/IEEE Joint Conference on Digital Libraries in 2020}, pages={389--392}, author={Spinde, Timo and Hamborg, Felix and Donnay, Karsten and Becerra, Angelica and Gipp, Bela} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/51333"> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:contributor>Spinde, Timo</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-10-13T13:30:30Z</dcterms:available> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/51333"/> <dc:language>eng</dc:language> <dc:contributor>Becerra, Angelica</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43613"/> <dc:contributor>Donnay, Karsten</dc:contributor> <dcterms:abstract xml:lang="eng">Traditional media outlets are known to report political news in a biased way, potentially affecting the political beliefs of the audience and even altering their voting behaviors. Many researchers focus on automatically detecting and identifying media bias in the news, but only very few studies exist that systematically analyze how theses biases can be best visualized and communicated. We create three manually annotated datasets and test varying visualization strategies. The results show no strong effects of becoming aware of the bias of the treatment groups compared to the control group, although a visualization of hand-annotated bias communicated bias in-stances more effectively than a framing visualization. Showing participants an overview page, which opposes different viewpoints on the same topic, does not yield differences in respondents' bias perception. Using a multilevel model, we find that perceived journalist bias is significantly related to perceived political extremeness and impartiality of the article.</dcterms:abstract> <dc:creator>Donnay, Karsten</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42"/> <dc:creator>Spinde, Timo</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:rights>terms-of-use</dc:rights> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-10-13T13:30:30Z</dc:date> <dc:creator>Hamborg, Felix</dc:creator> <dc:creator>Becerra, Angelica</dc:creator> <dcterms:title>Enabling News Consumers to View and Understand Biased News Coverage : A Study on the Perception and Visualization of Media Bias</dcterms:title> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43613"/> <dc:contributor>Hamborg, Felix</dc:contributor> <dc:contributor>Gipp, Bela</dc:contributor> <dc:creator>Gipp, Bela</dc:creator> <dcterms:issued>2020</dcterms:issued> </rdf:Description> </rdf:RDF>