Publikation: Homotaurine metabolized to 3-sulfopropanoate in Cupriavidus necator H16 : enzymes and genes in a patchwork pathway
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Homotaurine (3-aminopropanesulfonate), a natural product and an analogue of GABA (4-aminobutyrate), was found to be a sole source of nitrogen for Cupriavidus necator (Ralstonia eutropha) H16, whose genome sequence is known. Homotaurine nitrogen was assimilated into cell material, and the quantitative fate of the organosulfonate was sulfopropanoate, which was recovered in the growth medium. The first scalar reaction was shown to be inducible homotaurine:2-oxoglutarate aminotransferase, which released 3-sulfopropanal from homotaurine. This aminotransferase was purified to homogeneity and characterized. Peptide mass fingerprinting yielded locus tag H16_B0981, which was annotated gabT, for GABA transaminase (EC 2.6.1.19). Inducible, NAD(P)+-coupled 3-sulfopropanal dehydrogenase, which yielded 3-sulfopropanoate from 3-sulfopropanal, was also purified and characterized. Peptide mass fingerprinting yielded locus tag H16_B0982, which was annotated gabD1, for succinate-semialdehyde dehydrogenase (EC 1.2.1.16). GabT and GabD1 were each induced during growth with GABA, and cotranscription of gabTD was observed. In other organisms, regulator GabC or GabR is encoded contiguous with gabTD: candidate GabR′ was found in strain H16 and in many other organisms. An orthologue of the GABA permease (GabP), established in Escherichia coli, is present at H16_B1890, and it was transcribed constitutively. We presume that GabR′PTD are responsible for the inducible metabolism of homotaurine to intracellular 3-sulfopropanoate. The nature of the exporter of this highly charged compound was unclear until we realized from the sodium dodecyl sulfate-polyacrylamide gel electrophoresis data that sulfoacetaldehyde acetyltransferase (EC 2.3.3.15; H16_B1872) was strongly induced during growth with homotaurine and inferred that the sulfite exporter encoded at the end of the gene cluster (H16_B1874) has a broad substrate range that includes 3-sulfopropanoate.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
MAYER, Jutta, Alasdair M. COOK, 2009. Homotaurine metabolized to 3-sulfopropanoate in Cupriavidus necator H16 : enzymes and genes in a patchwork pathway. In: Journal of Bacteriology. 2009, 191(19), pp. 6052-6058. ISSN 0021-9193. eISSN 1098-5530. Available under: doi: 10.1128/JB.00678-09BibTex
@article{Mayer2009Homot-7433, year={2009}, doi={10.1128/JB.00678-09}, title={Homotaurine metabolized to 3-sulfopropanoate in Cupriavidus necator H16 : enzymes and genes in a patchwork pathway}, number={19}, volume={191}, issn={0021-9193}, journal={Journal of Bacteriology}, pages={6052--6058}, author={Mayer, Jutta and Cook, Alasdair M.} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/7433"> <dc:creator>Mayer, Jutta</dc:creator> <dcterms:abstract xml:lang="eng">Homotaurine (3-aminopropanesulfonate), a natural product and an analogue of GABA (4-aminobutyrate), was found to be a sole source of nitrogen for Cupriavidus necator (Ralstonia eutropha) H16, whose genome sequence is known. Homotaurine nitrogen was assimilated into cell material, and the quantitative fate of the organosulfonate was sulfopropanoate, which was recovered in the growth medium. The first scalar reaction was shown to be inducible homotaurine:2-oxoglutarate aminotransferase, which released 3-sulfopropanal from homotaurine. This aminotransferase was purified to homogeneity and characterized. Peptide mass fingerprinting yielded locus tag H16_B0981, which was annotated gabT, for GABA transaminase (EC 2.6.1.19). Inducible, NAD(P)+-coupled 3-sulfopropanal dehydrogenase, which yielded 3-sulfopropanoate from 3-sulfopropanal, was also purified and characterized. Peptide mass fingerprinting yielded locus tag H16_B0982, which was annotated gabD1, for succinate-semialdehyde dehydrogenase (EC 1.2.1.16). GabT and GabD1 were each induced during growth with GABA, and cotranscription of gabTD was observed. In other organisms, regulator GabC or GabR is encoded contiguous with gabTD: candidate GabR′ was found in strain H16 and in many other organisms. An orthologue of the GABA permease (GabP), established in Escherichia coli, is present at H16_B1890, and it was transcribed constitutively. We presume that GabR′PTD are responsible for the inducible metabolism of homotaurine to intracellular 3-sulfopropanoate. The nature of the exporter of this highly charged compound was unclear until we realized from the sodium dodecyl sulfate-polyacrylamide gel electrophoresis data that sulfoacetaldehyde acetyltransferase (EC 2.3.3.15; H16_B1872) was strongly induced during growth with homotaurine and inferred that the sulfite exporter encoded at the end of the gene cluster (H16_B1874) has a broad substrate range that includes 3-sulfopropanoate.</dcterms:abstract> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T17:34:24Z</dcterms:available> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/7433/1/0678_09.pdf"/> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:rights>terms-of-use</dc:rights> <dcterms:bibliographicCitation>First publ. in: Journal of Bacteriology 191 (2009), 19, pp. 6052-6058</dcterms:bibliographicCitation> <dc:language>eng</dc:language> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:issued>2009</dcterms:issued> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <dc:contributor>Mayer, Jutta</dc:contributor> <dc:format>application/pdf</dc:format> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <dcterms:title>Homotaurine metabolized to 3-sulfopropanoate in Cupriavidus necator H16 : enzymes and genes in a patchwork pathway</dcterms:title> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/> <dc:contributor>Cook, Alasdair M.</dc:contributor> <dc:creator>Cook, Alasdair M.</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T17:34:24Z</dc:date> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/7433/1/0678_09.pdf"/> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/7433"/> </rdf:Description> </rdf:RDF>