Publikation: Organized mineralized cellulose nanostructures for biomedical applications
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Cellulose is the most abundant naturally-occurring polymer, and possesses a one-dimensional (1D) anisotropic crystalline nanostructure with outstanding mechanical robustness, biocompatibility, renewability and rich surface chemistry in the form of nanocellulose in nature. Such features make cellulose an ideal bio-template for directing the bio-inspired mineralization of inorganic components into hierarchical nanostructures that are promising in biomedical applications. In this review, we will summarize the chemistry and nanostructure characteristics of cellulose and discuss how these favorable characteristics regulate the bio-inspired mineralization process for manufacturing the desired nanostructured bio-composites. We will focus on uncovering the design and manipulation principles of local chemical compositions/constituents and structural arrangement, distribution, dimensions, nanoconfinement and alignment of bio-inspired mineralization over multiple length-scales. In the end, we will underline how these cellulose biomineralized composites benefit biomedical applications. It is expected that this deep understanding of design and fabrication principles will enable construction of outstanding structural and functional cellulose/inorganic composites for more challenging biomedical applications.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
FENG, Yanhuizhi, Helmut CÖLFEN, Rui XIONG, 2023. Organized mineralized cellulose nanostructures for biomedical applications. In: Journal of Materials Chemistry B. Royal Society of Chemistry (RSC). 2023, 11(24), S. 5321-5349. ISSN 2050-750X. eISSN 2050-7518. Verfügbar unter: doi: 10.1039/d2tb02611bBibTex
@article{Feng2023Organ-66411, year={2023}, doi={10.1039/d2tb02611b}, title={Organized mineralized cellulose nanostructures for biomedical applications}, number={24}, volume={11}, issn={2050-750X}, journal={Journal of Materials Chemistry B}, pages={5321--5349}, author={Feng, Yanhuizhi and Cölfen, Helmut and Xiong, Rui} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/66411"> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/66411"/> <dcterms:abstract>Cellulose is the most abundant naturally-occurring polymer, and possesses a one-dimensional (1D) anisotropic crystalline nanostructure with outstanding mechanical robustness, biocompatibility, renewability and rich surface chemistry in the form of nanocellulose in nature. Such features make cellulose an ideal bio-template for directing the bio-inspired mineralization of inorganic components into hierarchical nanostructures that are promising in biomedical applications. In this review, we will summarize the chemistry and nanostructure characteristics of cellulose and discuss how these favorable characteristics regulate the bio-inspired mineralization process for manufacturing the desired nanostructured bio-composites. We will focus on uncovering the design and manipulation principles of local chemical compositions/constituents and structural arrangement, distribution, dimensions, nanoconfinement and alignment of bio-inspired mineralization over multiple length-scales. In the end, we will underline how these cellulose biomineralized composites benefit biomedical applications. It is expected that this deep understanding of design and fabrication principles will enable construction of outstanding structural and functional cellulose/inorganic composites for more challenging biomedical applications.</dcterms:abstract> <dc:rights>Attribution 3.0 Unported</dc:rights> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/29"/> <dcterms:title>Organized mineralized cellulose nanostructures for biomedical applications</dcterms:title> <dcterms:issued>2023</dcterms:issued> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/29"/> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/3.0/"/> <dc:creator>Cölfen, Helmut</dc:creator> <dc:creator>Xiong, Rui</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/66411/4/Feng_2-yjgiw3vhes0v4.pdf"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/66411/4/Feng_2-yjgiw3vhes0v4.pdf"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-03-14T14:12:52Z</dc:date> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-03-14T14:12:52Z</dcterms:available> <dc:contributor>Xiong, Rui</dc:contributor> <dc:contributor>Feng, Yanhuizhi</dc:contributor> <dc:language>eng</dc:language> <dc:creator>Feng, Yanhuizhi</dc:creator> <dc:contributor>Cölfen, Helmut</dc:contributor> </rdf:Description> </rdf:RDF>