Organized mineralized cellulose nanostructures for biomedical applications

No Thumbnail Available
Files
There are no files associated with this item.
Date
2023
Authors
Editors
Contact
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
URI (citable link)
DOI (citable link)
ArXiv-ID
International patent number
Link to the license
EU project number
Project
Open Access publication
Collections
Restricted until
Title in another language
Research Projects
Organizational Units
Journal Issue
Publication type
Journal article
Publication status
Published
Published in
Journal of Materials Chemistry B ; 2023. - Royal Society of Chemistry (RSC). - ISSN 2050-750X. - eISSN 2050-7518
Abstract
Cellulose is the most abundant naturally-occurring polymer, and possesses a one-dimensional (1D) anisotropic crystalline nanostructure with outstanding mechanical robustness, biocompatibility, renewability and rich surface chemistry in the form of nanocellulose in nature. Such features make cellulose an ideal bio-template for directing the bio-inspired mineralization of inorganic components into hierarchical nanostructures that are promising in biomedical applications. In this review, we will summarize the chemistry and nanostructure characteristics of cellulose and discuss how these favorable characteristics regulate the bio-inspired mineralization process for manufacturing the desired nanostructured bio-composites. We will focus on uncovering the design and manipulation principles of local chemical compositions/constituents and structural arrangement, distribution, dimensions, nanoconfinement and alignment of bio-inspired mineralization over multiple length-scales. In the end, we will underline how these cellulose biomineralized composites benefit biomedical applications. It is expected that this deep understanding of design and fabrication principles will enable construction of outstanding structural and functional cellulose/inorganic composites for more challenging biomedical applications.
Summary in another language
Subject (DDC)
540 Chemistry
Keywords
Conference
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690FENG, Yanhuizhi, Helmut CĂ–LFEN, Rui XIONG, 2023. Organized mineralized cellulose nanostructures for biomedical applications. In: Journal of Materials Chemistry B. Royal Society of Chemistry (RSC). ISSN 2050-750X. eISSN 2050-7518. Available under: doi: 10.1039/d2tb02611b
BibTex
@article{Feng2023Organ-66411,
  year={2023},
  doi={10.1039/d2tb02611b},
  title={Organized mineralized cellulose nanostructures for biomedical applications},
  issn={2050-750X},
  journal={Journal of Materials Chemistry B},
  author={Feng, Yanhuizhi and Cölfen, Helmut and Xiong, Rui}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/66411">
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/66411"/>
    <dcterms:abstract>Cellulose is the most abundant naturally-occurring polymer, and possesses a one-dimensional (1D) anisotropic crystalline nanostructure with outstanding mechanical robustness, biocompatibility, renewability and rich surface chemistry in the form of nanocellulose in nature. Such features make cellulose an ideal bio-template for directing the bio-inspired mineralization of inorganic components into hierarchical nanostructures that are promising in biomedical applications. In this review, we will summarize the chemistry and nanostructure characteristics of cellulose and discuss how these favorable characteristics regulate the bio-inspired mineralization process for manufacturing the desired nanostructured bio-composites. We will focus on uncovering the design and manipulation principles of local chemical compositions/constituents and structural arrangement, distribution, dimensions, nanoconfinement and alignment of bio-inspired mineralization over multiple length-scales. In the end, we will underline how these cellulose biomineralized composites benefit biomedical applications. It is expected that this deep understanding of design and fabrication principles will enable construction of outstanding structural and functional cellulose/inorganic composites for more challenging biomedical applications.</dcterms:abstract>
    <dc:rights>Attribution 3.0 Unported</dc:rights>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/29"/>
    <dcterms:title>Organized mineralized cellulose nanostructures for biomedical applications</dcterms:title>
    <dcterms:issued>2023</dcterms:issued>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/29"/>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/3.0/"/>
    <dc:creator>Cölfen, Helmut</dc:creator>
    <dc:creator>Xiong, Rui</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-03-14T14:12:52Z</dc:date>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-03-14T14:12:52Z</dcterms:available>
    <dc:contributor>Xiong, Rui</dc:contributor>
    <dc:contributor>Feng, Yanhuizhi</dc:contributor>
    <dc:language>eng</dc:language>
    <dc:creator>Feng, Yanhuizhi</dc:creator>
    <dc:contributor>Cölfen, Helmut</dc:contributor>
  </rdf:Description>
</rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Contact
URL of original publication
Test date of URL
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
Refereed
Yes
Online First: Journal articles that are published online before they appear as an actual part of a journal issue. Online first articles are published on the journal's website in the publisher's version.