Publikation: Automatic Taxonomy Extraction from Bipartite Graphs
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Given a large bipartite graph that represents objects and their properties, how can we automatically extract semantic information that provides an overview of the data and -- at the same time -- enables us to drill down to specific parts for an in-depth analysis? In this work, we propose extracting a taxonomy that models the relation between the properties via an is a hierarchy. The extracted taxonomy arranges the properties from general to specific providing different levels of abstraction. Our proposed method has the following desirable properties: (a) it requires no user-defined parameters, by exploiting the principle of minimum description length, (b) it is effective, by utilizing the inheritance of objects when representing the hierarchy, and (c) it is scalable, being linear in the number of edges. We demonstrate the effectiveness and scalability of our method on a broad spectrum of real, publicly available graphs from drug-property graphs to social networks with up to 22 million vertices and 286 million edges.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
KOTTER, Tobias, Stephan GUNNEMANN, Michael R. BERTHOLD, Christos FALOUTSOS, 2015. Automatic Taxonomy Extraction from Bipartite Graphs. 15th IEEE International Conference on Data Mining (ICDM 2015). Atlantic City, NJ, USA, 14. Nov. 2015 - 17. Nov. 2015. In: AGGARWAL, Charu, ed. and others. 15th IEEE International Conference on Data Mining : ICDM 2015 : Proceedings : 14–17 November 2015, Atlantic City, New Jersey. Los Alamitos, California: IEEE, 2015, pp. 221-230. ISBN 978-1-4673-9503-8. Available under: doi: 10.1109/ICDM.2015.24BibTex
@inproceedings{Kotter2015-11Autom-33506, year={2015}, doi={10.1109/ICDM.2015.24}, title={Automatic Taxonomy Extraction from Bipartite Graphs}, isbn={978-1-4673-9503-8}, publisher={IEEE}, address={Los Alamitos, California}, booktitle={15th IEEE International Conference on Data Mining : ICDM 2015 : Proceedings : 14–17 November 2015, Atlantic City, New Jersey}, pages={221--230}, editor={Aggarwal, Charu}, author={Kotter, Tobias and Gunnemann, Stephan and Berthold, Michael R. and Faloutsos, Christos} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/33506"> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-03-30T13:10:33Z</dc:date> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:language>eng</dc:language> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-03-30T13:10:33Z</dcterms:available> <dc:contributor>Gunnemann, Stephan</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:issued>2015-11</dcterms:issued> <dc:contributor>Berthold, Michael R.</dc:contributor> <dc:creator>Berthold, Michael R.</dc:creator> <dc:contributor>Kotter, Tobias</dc:contributor> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/33506"/> <dc:contributor>Faloutsos, Christos</dc:contributor> <dcterms:abstract xml:lang="eng">Given a large bipartite graph that represents objects and their properties, how can we automatically extract semantic information that provides an overview of the data and -- at the same time -- enables us to drill down to specific parts for an in-depth analysis? In this work, we propose extracting a taxonomy that models the relation between the properties via an is a hierarchy. The extracted taxonomy arranges the properties from general to specific providing different levels of abstraction. Our proposed method has the following desirable properties: (a) it requires no user-defined parameters, by exploiting the principle of minimum description length, (b) it is effective, by utilizing the inheritance of objects when representing the hierarchy, and (c) it is scalable, being linear in the number of edges. We demonstrate the effectiveness and scalability of our method on a broad spectrum of real, publicly available graphs from drug-property graphs to social networks with up to 22 million vertices and 286 million edges.</dcterms:abstract> <dc:creator>Faloutsos, Christos</dc:creator> <dcterms:title>Automatic Taxonomy Extraction from Bipartite Graphs</dcterms:title> <dc:creator>Gunnemann, Stephan</dc:creator> <dc:creator>Kotter, Tobias</dc:creator> </rdf:Description> </rdf:RDF>