Publikation:

Automatic Taxonomy Extraction from Bipartite Graphs

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2015

Autor:innen

Kotter, Tobias
Gunnemann, Stephan
Faloutsos, Christos

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

AGGARWAL, Charu, ed. and others. 15th IEEE International Conference on Data Mining : ICDM 2015 : Proceedings : 14–17 November 2015, Atlantic City, New Jersey. Los Alamitos, California: IEEE, 2015, pp. 221-230. ISBN 978-1-4673-9503-8. Available under: doi: 10.1109/ICDM.2015.24

Zusammenfassung

Given a large bipartite graph that represents objects and their properties, how can we automatically extract semantic information that provides an overview of the data and -- at the same time -- enables us to drill down to specific parts for an in-depth analysis? In this work, we propose extracting a taxonomy that models the relation between the properties via an is a hierarchy. The extracted taxonomy arranges the properties from general to specific providing different levels of abstraction. Our proposed method has the following desirable properties: (a) it requires no user-defined parameters, by exploiting the principle of minimum description length, (b) it is effective, by utilizing the inheritance of objects when representing the hierarchy, and (c) it is scalable, being linear in the number of edges. We demonstrate the effectiveness and scalability of our method on a broad spectrum of real, publicly available graphs from drug-property graphs to social networks with up to 22 million vertices and 286 million edges.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

15th IEEE International Conference on Data Mining (ICDM 2015), 14. Nov. 2015 - 17. Nov. 2015, Atlantic City, NJ, USA
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690KOTTER, Tobias, Stephan GUNNEMANN, Michael R. BERTHOLD, Christos FALOUTSOS, 2015. Automatic Taxonomy Extraction from Bipartite Graphs. 15th IEEE International Conference on Data Mining (ICDM 2015). Atlantic City, NJ, USA, 14. Nov. 2015 - 17. Nov. 2015. In: AGGARWAL, Charu, ed. and others. 15th IEEE International Conference on Data Mining : ICDM 2015 : Proceedings : 14–17 November 2015, Atlantic City, New Jersey. Los Alamitos, California: IEEE, 2015, pp. 221-230. ISBN 978-1-4673-9503-8. Available under: doi: 10.1109/ICDM.2015.24
BibTex
@inproceedings{Kotter2015-11Autom-33506,
  year={2015},
  doi={10.1109/ICDM.2015.24},
  title={Automatic Taxonomy Extraction from Bipartite Graphs},
  isbn={978-1-4673-9503-8},
  publisher={IEEE},
  address={Los Alamitos, California},
  booktitle={15th IEEE International Conference on Data Mining : ICDM 2015 : Proceedings : 14–17 November 2015, Atlantic City, New Jersey},
  pages={221--230},
  editor={Aggarwal, Charu},
  author={Kotter, Tobias and Gunnemann, Stephan and Berthold, Michael R. and Faloutsos, Christos}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/33506">
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-03-30T13:10:33Z</dc:date>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:language>eng</dc:language>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-03-30T13:10:33Z</dcterms:available>
    <dc:contributor>Gunnemann, Stephan</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:issued>2015-11</dcterms:issued>
    <dc:contributor>Berthold, Michael R.</dc:contributor>
    <dc:creator>Berthold, Michael R.</dc:creator>
    <dc:contributor>Kotter, Tobias</dc:contributor>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/33506"/>
    <dc:contributor>Faloutsos, Christos</dc:contributor>
    <dcterms:abstract xml:lang="eng">Given a large bipartite graph that represents objects and their properties, how can we automatically extract semantic information that provides an overview of the data and -- at the same time -- enables us to drill down to specific parts for an in-depth analysis? In this work, we propose extracting a taxonomy that models the relation between the properties via an is a hierarchy. The extracted taxonomy arranges the properties from general to specific providing different levels of abstraction. Our proposed method has the following desirable properties: (a) it requires no user-defined parameters, by exploiting the principle of minimum description length, (b) it is effective, by utilizing the inheritance of objects when representing the hierarchy, and (c) it is scalable, being linear in the number of edges. We demonstrate the effectiveness and scalability of our method on a broad spectrum of real, publicly available graphs from drug-property graphs to social networks with up to 22 million vertices and 286 million edges.</dcterms:abstract>
    <dc:creator>Faloutsos, Christos</dc:creator>
    <dcterms:title>Automatic Taxonomy Extraction from Bipartite Graphs</dcterms:title>
    <dc:creator>Gunnemann, Stephan</dc:creator>
    <dc:creator>Kotter, Tobias</dc:creator>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen