Publikation: Visual Interpretation of Kernel-Based Prediction Models
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Statistical models are frequently used to estimate molecular properties, e.g., to establish quantitative structure-activity and structure-property relationships. For such models, interpretability, knowledge of the domain of applicability, and an estimate of confidence in the predictions are essential. We develop and validate a method for the interpretation of kernel-based prediction models. As a consequence of interpretability, the method helps to assess the domain of applicability of a model, to judge the reliability of a prediction, and to determine relevant molecular features. Increased interpretability also facilitates the acceptance of such models. Our method is based on visualization: For each prediction, the most contributing training samples are computed and visualized. We quantitatively show the effectiveness of our approach by conducting a questionnaire study with 71 participants, resulting in significant improvements of the participants' ability to distinguish between correct and incorrect predictions of a Gaussian process model for Ames mutagenicity.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
HANSEN, Katja, David BAEHRENS, Timon SCHROETER, Matthias RUPP, Klaus-Robert MÜLLER, 2011. Visual Interpretation of Kernel-Based Prediction Models. In: Molecular Informatics. Wiley. 2011, 30(9), pp. 817-826. ISSN 1868-1743. eISSN 1868-1751. Available under: doi: 10.1002/minf.201100059BibTex
@article{Hansen2011-09Visua-52519, year={2011}, doi={10.1002/minf.201100059}, title={Visual Interpretation of Kernel-Based Prediction Models}, number={9}, volume={30}, issn={1868-1743}, journal={Molecular Informatics}, pages={817--826}, author={Hansen, Katja and Baehrens, David and Schroeter, Timon and Rupp, Matthias and Müller, Klaus-Robert} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52519"> <dc:creator>Hansen, Katja</dc:creator> <dc:creator>Schroeter, Timon</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-01-20T09:46:25Z</dcterms:available> <dc:creator>Rupp, Matthias</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-01-20T09:46:25Z</dc:date> <dc:creator>Müller, Klaus-Robert</dc:creator> <dc:contributor>Rupp, Matthias</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/52519"/> <dcterms:issued>2011-09</dcterms:issued> <dc:contributor>Müller, Klaus-Robert</dc:contributor> <dc:creator>Baehrens, David</dc:creator> <dcterms:title>Visual Interpretation of Kernel-Based Prediction Models</dcterms:title> <dcterms:abstract xml:lang="eng">Statistical models are frequently used to estimate molecular properties, e.g., to establish quantitative structure-activity and structure-property relationships. For such models, interpretability, knowledge of the domain of applicability, and an estimate of confidence in the predictions are essential. We develop and validate a method for the interpretation of kernel-based prediction models. As a consequence of interpretability, the method helps to assess the domain of applicability of a model, to judge the reliability of a prediction, and to determine relevant molecular features. Increased interpretability also facilitates the acceptance of such models. Our method is based on visualization: For each prediction, the most contributing training samples are computed and visualized. We quantitatively show the effectiveness of our approach by conducting a questionnaire study with 71 participants, resulting in significant improvements of the participants' ability to distinguish between correct and incorrect predictions of a Gaussian process model for Ames mutagenicity.</dcterms:abstract> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Hansen, Katja</dc:contributor> <dc:language>eng</dc:language> <dc:rights>terms-of-use</dc:rights> <dc:contributor>Schroeter, Timon</dc:contributor> <dc:contributor>Baehrens, David</dc:contributor> </rdf:Description> </rdf:RDF>