Publikation:

Visual Interpretation of Kernel-Based Prediction Models

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2011

Autor:innen

Hansen, Katja
Baehrens, David
Schroeter, Timon
Müller, Klaus-Robert

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Molecular Informatics. Wiley. 2011, 30(9), pp. 817-826. ISSN 1868-1743. eISSN 1868-1751. Available under: doi: 10.1002/minf.201100059

Zusammenfassung

Statistical models are frequently used to estimate molecular properties, e.g., to establish quantitative structure-activity and structure-property relationships. For such models, interpretability, knowledge of the domain of applicability, and an estimate of confidence in the predictions are essential. We develop and validate a method for the interpretation of kernel-based prediction models. As a consequence of interpretability, the method helps to assess the domain of applicability of a model, to judge the reliability of a prediction, and to determine relevant molecular features. Increased interpretability also facilitates the acceptance of such models. Our method is based on visualization: For each prediction, the most contributing training samples are computed and visualized. We quantitatively show the effectiveness of our approach by conducting a questionnaire study with 71 participants, resulting in significant improvements of the participants' ability to distinguish between correct and incorrect predictions of a Gaussian process model for Ames mutagenicity.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Kernel-based learning, Confidence estimation, Domain of applicability, QSAR, QSPR

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690HANSEN, Katja, David BAEHRENS, Timon SCHROETER, Matthias RUPP, Klaus-Robert MÜLLER, 2011. Visual Interpretation of Kernel-Based Prediction Models. In: Molecular Informatics. Wiley. 2011, 30(9), pp. 817-826. ISSN 1868-1743. eISSN 1868-1751. Available under: doi: 10.1002/minf.201100059
BibTex
@article{Hansen2011-09Visua-52519,
  year={2011},
  doi={10.1002/minf.201100059},
  title={Visual Interpretation of Kernel-Based Prediction Models},
  number={9},
  volume={30},
  issn={1868-1743},
  journal={Molecular Informatics},
  pages={817--826},
  author={Hansen, Katja and Baehrens, David and Schroeter, Timon and Rupp, Matthias and Müller, Klaus-Robert}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52519">
    <dc:creator>Hansen, Katja</dc:creator>
    <dc:creator>Schroeter, Timon</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-01-20T09:46:25Z</dcterms:available>
    <dc:creator>Rupp, Matthias</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-01-20T09:46:25Z</dc:date>
    <dc:creator>Müller, Klaus-Robert</dc:creator>
    <dc:contributor>Rupp, Matthias</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/52519"/>
    <dcterms:issued>2011-09</dcterms:issued>
    <dc:contributor>Müller, Klaus-Robert</dc:contributor>
    <dc:creator>Baehrens, David</dc:creator>
    <dcterms:title>Visual Interpretation of Kernel-Based Prediction Models</dcterms:title>
    <dcterms:abstract xml:lang="eng">Statistical models are frequently used to estimate molecular properties, e.g., to establish quantitative structure-activity and structure-property relationships. For such models, interpretability, knowledge of the domain of applicability, and an estimate of confidence in the predictions are essential. We develop and validate a method for the interpretation of kernel-based prediction models. As a consequence of interpretability, the method helps to assess the domain of applicability of a model, to judge the reliability of a prediction, and to determine relevant molecular features. Increased interpretability also facilitates the acceptance of such models. Our method is based on visualization: For each prediction, the most contributing training samples are computed and visualized. We quantitatively show the effectiveness of our approach by conducting a questionnaire study with 71 participants, resulting in significant improvements of the participants' ability to distinguish between correct and incorrect predictions of a Gaussian process model for Ames mutagenicity.</dcterms:abstract>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Hansen, Katja</dc:contributor>
    <dc:language>eng</dc:language>
    <dc:rights>terms-of-use</dc:rights>
    <dc:contributor>Schroeter, Timon</dc:contributor>
    <dc:contributor>Baehrens, David</dc:contributor>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Unbekannt
Diese Publikation teilen