Publikation: Numerische Stabilitätsanalyse von Travelling Waves anhand der Evans-Funktion und der Lopatinski-Determinante
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Der erste Teil dieser Dissertation behandelt die numerische Berechnung der Evans-Funktion im Kontext der Stabilitätsanalyse von Travelling Waves auf Basis eines Eigenwertproblems, welches als System erster Ordnung die Grundlage zur Definition der Evans-Funktion bildet. Aus Sicht der Numerik sind hierbei die folgenden beiden Punkte zu beachten: (i) Die Sicherstellung der Analytizität der Evans-Funktion im komplexen Spektralparameter und (ii) die unterschiedlichen Wachstumsraten beim Lösen des Eigenwertproblems. Beide Punkte betreffen - wenn auch aus unterschiedlicher Sichtweise - die numerische Fortsetzung von Unterräumen, und zwar im Fall (i) bezüglich des Spektralparameters und im Fall (ii) bezüglich der mitbewegten Koordinate der Travelling Wave. Problem (i) wird gelöst durch einen Algorithmus, welcher auf dem Satz über implizite Funktionen basiert und die Analytizität im Spektralparameter sichert. Eine Lösung für Problem (ii) ergibt sich, in dem das zugrunde liegende Eigenwertproblem auf die komplexe Stiefel-Mannigfaltigkeit projiziert wird, um anschließend als Differential-algebraische Gleichung mit der passenden Orthogonalitätsbedingung gelöst zu werden. Die praktische Umsetzung hierfür wird mit einem Verfahren für Index-2-Probleme realisiert, dem sogenannten modifizierten SPARK-Newton-Verfahren. Vier Beispiele werden erfolgreich getestet zur Demonstration der in Teil I entwickelten numerischen Verfahren.
Teil II der vorliegenden Arbeit behandelt die Lopatinski-Determinante für das zweidimensionale ideale isotherme MHD-System. Die in diesem Zusammenhang auf Stabilität zu untersuchenden Schock-Lösungen sind die sogenannten langsamen und schnellen Lax-Schocks, welche die Rankine-Hugoniot-Bedingung erfüllen. Eine weitere Unterteilung dieser Schocks wird in parallel und nicht-parallel vorgenommen. Parallele langsame Lax-Schocks generieren beim Nulleigenwert eine kritische Mannigfaltigkeit im Parameterraum in einer einfachen algebraischen Darstellung, was beim parallelen schnellen Lax-Schock nicht der Fall ist. Nicht-parallele langsame Lax-Schocks werden anschließend auf Basis der Ergebnisse des parallelen Lax-Schocks untersucht. Hierbei spielt insbesondere die Numerik eine wichtige Rolle, da in diesem Fall für die Lopatinski-Determinante keine explizite Darstellung mehr realisierbar ist. Um die Glattheit der Lopatinski-Determinante in den auftretenden Parametern zu sichern, muss das Konzept der Fortsetzung von Unterräumen in die numerischen Verfahren mit eingearbeitet werden. Numerische Rechnungen zeigen, dass für nicht-parallele langsame Lax-Schocks ein instabiles Paar komplex konjugierter Eigenwerte existiert mit nicht-verschwindendem Imaginärteil.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
KLEBER, Felix, 2016. Numerische Stabilitätsanalyse von Travelling Waves anhand der Evans-Funktion und der Lopatinski-Determinante [Dissertation]. Konstanz: University of KonstanzBibTex
@phdthesis{Kleber2016Numer-33064, year={2016}, title={Numerische Stabilitätsanalyse von Travelling Waves anhand der Evans-Funktion und der Lopatinski-Determinante}, author={Kleber, Felix}, address={Konstanz}, school={Universität Konstanz} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/33064"> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:rights>terms-of-use</dc:rights> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:title>Numerische Stabilitätsanalyse von Travelling Waves anhand der Evans-Funktion und der Lopatinski-Determinante</dcterms:title> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/33064"/> <dc:contributor>Kleber, Felix</dc:contributor> <dc:language>deu</dc:language> <dc:creator>Kleber, Felix</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/33064/3/Kleber_0-322588.pdf"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-02-22T09:15:00Z</dcterms:available> <dcterms:abstract xml:lang="deu">Der erste Teil dieser Dissertation behandelt die numerische Berechnung der Evans-Funktion im Kontext der Stabilitätsanalyse von Travelling Waves auf Basis eines Eigenwertproblems, welches als System erster Ordnung die Grundlage zur Definition der Evans-Funktion bildet. Aus Sicht der Numerik sind hierbei die folgenden beiden Punkte zu beachten: (i) Die Sicherstellung der Analytizität der Evans-Funktion im komplexen Spektralparameter und (ii) die unterschiedlichen Wachstumsraten beim Lösen des Eigenwertproblems. Beide Punkte betreffen - wenn auch aus unterschiedlicher Sichtweise - die numerische Fortsetzung von Unterräumen, und zwar im Fall (i) bezüglich des Spektralparameters und im Fall (ii) bezüglich der mitbewegten Koordinate der Travelling Wave. Problem (i) wird gelöst durch einen Algorithmus, welcher auf dem Satz über implizite Funktionen basiert und die Analytizität im Spektralparameter sichert. Eine Lösung für Problem (ii) ergibt sich, in dem das zugrunde liegende Eigenwertproblem auf die komplexe Stiefel-Mannigfaltigkeit projiziert wird, um anschließend als Differential-algebraische Gleichung mit der passenden Orthogonalitätsbedingung gelöst zu werden. Die praktische Umsetzung hierfür wird mit einem Verfahren für Index-2-Probleme realisiert, dem sogenannten modifizierten SPARK-Newton-Verfahren. Vier Beispiele werden erfolgreich getestet zur Demonstration der in Teil I entwickelten numerischen Verfahren.<br /><br />Teil II der vorliegenden Arbeit behandelt die Lopatinski-Determinante für das zweidimensionale ideale isotherme MHD-System. Die in diesem Zusammenhang auf Stabilität zu untersuchenden Schock-Lösungen sind die sogenannten langsamen und schnellen Lax-Schocks, welche die Rankine-Hugoniot-Bedingung erfüllen. Eine weitere Unterteilung dieser Schocks wird in parallel und nicht-parallel vorgenommen. Parallele langsame Lax-Schocks generieren beim Nulleigenwert eine kritische Mannigfaltigkeit im Parameterraum in einer einfachen algebraischen Darstellung, was beim parallelen schnellen Lax-Schock nicht der Fall ist. Nicht-parallele langsame Lax-Schocks werden anschließend auf Basis der Ergebnisse des parallelen Lax-Schocks untersucht. Hierbei spielt insbesondere die Numerik eine wichtige Rolle, da in diesem Fall für die Lopatinski-Determinante keine explizite Darstellung mehr realisierbar ist. Um die Glattheit der Lopatinski-Determinante in den auftretenden Parametern zu sichern, muss das Konzept der Fortsetzung von Unterräumen in die numerischen Verfahren mit eingearbeitet werden. Numerische Rechnungen zeigen, dass für nicht-parallele langsame Lax-Schocks ein instabiles Paar komplex konjugierter Eigenwerte existiert mit nicht-verschwindendem Imaginärteil.</dcterms:abstract> <dcterms:issued>2016</dcterms:issued> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-02-22T09:15:00Z</dc:date> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/33064/3/Kleber_0-322588.pdf"/> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> </rdf:Description> </rdf:RDF>