Publikation:

Universal discrete-time reservoir computers with stochastic inputs and linear readouts using non-homogeneous state-affine systems

Lade...
Vorschaubild

Dateien

Grigoryeva_2-xm98wdho94pe1.pdf
Grigoryeva_2-xm98wdho94pe1.pdfGröße: 763.9 KBDownloads: 171

Datum

2018

Autor:innen

Ortega, Juan-Pablo

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Link zur Lizenz

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Hybrid
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Journal of Machine Learning Research : JMLR. 2018, 19, 24. ISSN 1532-4435. eISSN 1533-7928

Zusammenfassung

A new class of non-homogeneous state-affine systems is introduced for use in reservoir computing. Sufficient conditions are identified that guarantee first, that the associated reservoir computers with linear readouts are causal, time-invariant, and satisfy the fading memory property and second, that a subset of this class is universal in the category of fading memory filters with stochastic almost surely uniformly bounded inputs. This means that any discrete-time filter that satisfies the fading memory property with random inputs of that type can be uniformly approximated by elements in the non-homogeneous state-affine family.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

reservoir computing, universality, state-affine systems, SAS, echo state networks, ESN, echo state affine systems, machine learning, fading memory property, linear training, stochastic signal treatment

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690GRIGORYEVA, Lyudmila, Juan-Pablo ORTEGA, 2018. Universal discrete-time reservoir computers with stochastic inputs and linear readouts using non-homogeneous state-affine systems. In: Journal of Machine Learning Research : JMLR. 2018, 19, 24. ISSN 1532-4435. eISSN 1533-7928
BibTex
@article{Grigoryeva2018Unive-43336,
  year={2018},
  title={Universal discrete-time reservoir computers with stochastic inputs and linear readouts using non-homogeneous state-affine systems},
  url={http://jmlr.org/papers/v19/18-020.html},
  volume={19},
  issn={1532-4435},
  journal={Journal of Machine Learning Research : JMLR},
  author={Grigoryeva, Lyudmila and Ortega, Juan-Pablo},
  note={Article Number: 24}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43336">
    <dcterms:issued>2018</dcterms:issued>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-09-20T12:31:13Z</dc:date>
    <dcterms:title>Universal discrete-time reservoir computers with stochastic inputs and linear readouts using non-homogeneous state-affine systems</dcterms:title>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:language>eng</dc:language>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/43336/1/Grigoryeva_2-xm98wdho94pe1.pdf"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Ortega, Juan-Pablo</dc:creator>
    <dc:creator>Grigoryeva, Lyudmila</dc:creator>
    <dc:contributor>Grigoryeva, Lyudmila</dc:contributor>
    <dc:contributor>Ortega, Juan-Pablo</dc:contributor>
    <dcterms:abstract xml:lang="eng">A new class of non-homogeneous state-affine systems is introduced for use in reservoir computing. Sufficient conditions are identified that guarantee first, that the associated reservoir computers with linear readouts are causal, time-invariant, and satisfy the fading memory property and second, that a subset of this class is universal in the category of fading memory filters with stochastic almost surely uniformly bounded inputs. This means that any discrete-time filter that satisfies the fading memory property with random inputs of that type can be uniformly approximated by elements in the non-homogeneous state-affine family.</dcterms:abstract>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-09-20T12:31:13Z</dcterms:available>
    <dc:rights>Attribution 4.0 International</dc:rights>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/43336"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/43336/1/Grigoryeva_2-xm98wdho94pe1.pdf"/>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

2018-09-20

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen