Publikation: Adverse reactions to the use of large language models in social interactions
Dateien
Datum
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Large language models (LLMs) are poised to reshape the way individuals communicate and interact. While this form of AI has the potential to efficiently make many human decisions, there is limited understanding of how individuals will respond to its use in social interactions. In particular, it remains unclear how individuals interact with LLMs when the interaction has consequences for other people. Here, we report the results of a large-scale, preregistered online experiment (n = 3,552) showing that human players’ fairness, trust, trustworthiness, cooperation, and coordination in economic two-player games decrease when the decision of the interaction partner is taken over by ChatGPT. On the contrary, we observe no adverse reactions when individuals are uncertain whether they are interacting with a human or a LLM. At the same time, participants often delegate decisions to the LLM, especially when the model’s involvement is not disclosed, and individuals have difficulty distinguishing between decisions made by humans and those made by AI.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
DVORAK, Fabian, Regina STUMPF, Sebastian FEHRLER, Urs FISCHBACHER, 2025. Adverse reactions to the use of large language models in social interactions. In: PNAS Nexus. Oxford University Press (OUP). 2025, 4(4), pgaf112. eISSN 2752-6542. Verfügbar unter: doi: 10.1093/pnasnexus/pgaf112BibTex
@article{Dvorak2025-03-27Adver-73125, title={Adverse reactions to the use of large language models in social interactions}, year={2025}, doi={10.1093/pnasnexus/pgaf112}, number={4}, volume={4}, journal={PNAS Nexus}, author={Dvorak, Fabian and Stumpf, Regina and Fehrler, Sebastian and Fischbacher, Urs}, note={Article Number: pgaf112} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/73125"> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Fehrler, Sebastian</dc:creator> <dc:language>eng</dc:language> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43615"/> <dc:contributor>Dvorak, Fabian</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-04-29T07:04:49Z</dcterms:available> <dcterms:issued>2025-03-27</dcterms:issued> <dc:creator>Fischbacher, Urs</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/46"/> <dcterms:abstract>Large language models (LLMs) are poised to reshape the way individuals communicate and interact. While this form of AI has the potential to efficiently make many human decisions, there is limited understanding of how individuals will respond to its use in social interactions. In particular, it remains unclear how individuals interact with LLMs when the interaction has consequences for other people. Here, we report the results of a large-scale, preregistered online experiment (n = 3,552) showing that human players’ fairness, trust, trustworthiness, cooperation, and coordination in economic two-player games decrease when the decision of the interaction partner is taken over by ChatGPT. On the contrary, we observe no adverse reactions when individuals are uncertain whether they are interacting with a human or a LLM. At the same time, participants often delegate decisions to the LLM, especially when the model’s involvement is not disclosed, and individuals have difficulty distinguishing between decisions made by humans and those made by AI.</dcterms:abstract> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Dvorak, Fabian</dc:creator> <dc:rights>Attribution 4.0 International</dc:rights> <dc:contributor>Fischbacher, Urs</dc:contributor> <dc:contributor>Stumpf, Regina</dc:contributor> <dc:creator>Stumpf, Regina</dc:creator> <dcterms:title>Adverse reactions to the use of large language models in social interactions</dcterms:title> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/46"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/73125/1/Dvorak_2-xkcurodx2qun1.PDF"/> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43615"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/73125"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-04-29T07:04:49Z</dc:date> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/73125/1/Dvorak_2-xkcurodx2qun1.PDF"/> <dc:contributor>Fehrler, Sebastian</dc:contributor> </rdf:Description> </rdf:RDF>