Publikation: The valuation difference rank of a quasi-ordered difference field
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
There are several equivalent characterizations of the valuation rank of an ordered or valued field. In this paper, we extend the theory to the case of an ordered or valued {\it difference} field (that is, ordered or valued field endowed with a compatible field automorphism). We introduce the notion of {\it difference rank}. To treat simultaneously the cases of ordered and valued fields, we consider quasi-ordered fields. We characterize the difference rank as the quotient modulo the equivalence relation naturally induced by the automorphism (which encodes its growth rate). In analogy to the theory of convex valuations, we prove that any linearly ordered set can be realized as the difference rank of a maximally valued quasi-ordered difference field. As an application, we show that for every regular uncountable cardinal κ such that κ=κ<κ, there are 2κ pairwise non-isomorphic quasi-ordered difference fields of cardinality κ, but all isomorphic as quasi-ordered fields.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
KUHLMANN, Salma, Mickael MATUSINSKI, Francoise POINT, 2017. The valuation difference rank of a quasi-ordered difference field. New Pathways between Group Theory and Model Theory. Mülheim an der Ruhr, Germany, 1. Feb. 2016 - 4. Feb. 2016. In: DROSTE, Manfred, ed., László FUCHS, ed., Brendan GOLDSMITH, ed. and others. Groups, Modules and Model Theory : Surveys and Recent Developments ; In Memory of Rüdiger Göbel. Cham: Springer International Publishing, 2017, pp. 399-414. ISBN 978-3-319-51717-9. Available under: doi: 10.1007/978-3-319-51718-6_23BibTex
@inproceedings{Kuhlmann2017valua-37271, year={2017}, doi={10.1007/978-3-319-51718-6_23}, title={The valuation difference rank of a quasi-ordered difference field}, isbn={978-3-319-51717-9}, publisher={Springer International Publishing}, address={Cham}, booktitle={Groups, Modules and Model Theory : Surveys and Recent Developments ; In Memory of Rüdiger Göbel}, pages={399--414}, editor={Droste, Manfred and Fuchs, László and Goldsmith, Brendan}, author={Kuhlmann, Salma and Matusinski, Mickael and Point, Francoise} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/37271"> <dc:contributor>Kuhlmann, Salma</dc:contributor> <dcterms:title>The valuation difference rank of a quasi-ordered difference field</dcterms:title> <dc:creator>Matusinski, Mickael</dc:creator> <dc:contributor>Point, Francoise</dc:contributor> <dc:contributor>Matusinski, Mickael</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Kuhlmann, Salma</dc:creator> <dcterms:issued>2017</dcterms:issued> <dc:language>eng</dc:language> <dcterms:abstract xml:lang="eng">There are several equivalent characterizations of the valuation rank of an ordered or valued field. In this paper, we extend the theory to the case of an ordered or valued {\it difference} field (that is, ordered or valued field endowed with a compatible field automorphism). We introduce the notion of {\it difference rank}. To treat simultaneously the cases of ordered and valued fields, we consider quasi-ordered fields. We characterize the difference rank as the quotient modulo the equivalence relation naturally induced by the automorphism (which encodes its growth rate). In analogy to the theory of convex valuations, we prove that any linearly ordered set can be realized as the difference rank of a maximally valued quasi-ordered difference field. As an application, we show that for every regular uncountable cardinal κ such that κ=κ<sup><κ</sup>, there are 2<sup>κ</sup> pairwise non-isomorphic quasi-ordered difference fields of cardinality κ, but all isomorphic as quasi-ordered fields.</dcterms:abstract> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-02-09T11:57:49Z</dc:date> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-02-09T11:57:49Z</dcterms:available> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/37271"/> <dc:creator>Point, Francoise</dc:creator> </rdf:Description> </rdf:RDF>