Publikation: Invariance of total nonnegativity of a tridiagonal matrix under element-wise perturbation
Lade...
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2014
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Operators and Matrices. 2014, 8(1), pp. 129-137. ISSN 1846-3886. Available under: doi: 10.7153/oam-08-06
Zusammenfassung
Tridiagonal matrices are considered which are totally nonnegative, i.e., all their minors are nonnegative. The largest amount is given by which the single entries of such a matrix can be perturbed without loosing the property of total nonnegativity.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
Totally nonnegative matrix, tridiagonal matrix, element-wise perturbation,determinantal inequalities
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690
ADM, Mohammad, Jürgen GARLOFF, 2014. Invariance of total nonnegativity of a tridiagonal matrix under element-wise perturbation. In: Operators and Matrices. 2014, 8(1), pp. 129-137. ISSN 1846-3886. Available under: doi: 10.7153/oam-08-06BibTex
@article{Adm2014Invar-29986, year={2014}, doi={10.7153/oam-08-06}, title={Invariance of total nonnegativity of a tridiagonal matrix under element-wise perturbation}, number={1}, volume={8}, issn={1846-3886}, journal={Operators and Matrices}, pages={129--137}, author={Adm, Mohammad and Garloff, Jürgen}, note={Link zur Veröffentlichung in den "Konstanzer Schriften in Mathematik": http://nbn-resolving.de/urn:nbn:de:bsz:352-209870} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/29986"> <dc:creator>Garloff, Jürgen</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:title>Invariance of total nonnegativity of a tridiagonal matrix under element-wise perturbation</dcterms:title> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-02-24T10:10:15Z</dcterms:available> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/29986"/> <dcterms:issued>2014</dcterms:issued> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:abstract xml:lang="eng">Tridiagonal matrices are considered which are totally nonnegative, i.e., all their minors are nonnegative. The largest amount is given by which the single entries of such a matrix can be perturbed without loosing the property of total nonnegativity.</dcterms:abstract> <dc:contributor>Adm, Mohammad</dc:contributor> <dc:creator>Adm, Mohammad</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-02-24T10:10:15Z</dc:date> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:language>eng</dc:language> <dc:contributor>Garloff, Jürgen</dc:contributor> </rdf:Description> </rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Link zur Veröffentlichung in den "Konstanzer Schriften in Mathematik": http://nbn-resolving.de/urn:nbn:de:bsz:352-209870
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja