Publikation: On Clustering Time Series Using Euclidean Distance and Pearson Correlation
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
For time series comparisons, it has often been observed that z-score normalized Euclidean distances far outperform the unnormalized variant. In this paper we show that a z-score normalized, squared Euclidean Distance is, in fact, equal to a distance based on Pearson Correlation. This has profound impact on many distance-based classification or clustering methods. In addition to this theoretically sound result we also show that the often used k-Means algorithm formally needs a mod ification to keep the interpretation as Pearson correlation strictly valid. Experimental results demonstrate that in many cases the standard k-Means algorithm generally produces the same results.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
BERTHOLD, Michael R., Frank HÖPPNER, 2016. On Clustering Time Series Using Euclidean Distance and Pearson CorrelationBibTex
@unpublished{Berthold2016Clust-34784, year={2016}, title={On Clustering Time Series Using Euclidean Distance and Pearson Correlation}, author={Berthold, Michael R. and Höppner, Frank} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/34784"> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/34784/1/Berthold_0-347884.pdf"/> <dcterms:issued>2016</dcterms:issued> <dc:contributor>Berthold, Michael R.</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:abstract xml:lang="eng">For time series comparisons, it has often been observed that z-score normalized Euclidean distances far outperform the unnormalized variant. In this paper we show that a z-score normalized, squared Euclidean Distance is, in fact, equal to a distance based on Pearson Correlation. This has profound impact on many distance-based classification or clustering methods. In addition to this theoretically sound result we also show that the often used k-Means algorithm formally needs a mod ification to keep the interpretation as Pearson correlation strictly valid. Experimental results demonstrate that in many cases the standard k-Means algorithm generally produces the same results.</dcterms:abstract> <dc:language>eng</dc:language> <dc:contributor>Höppner, Frank</dc:contributor> <dcterms:title>On Clustering Time Series Using Euclidean Distance and Pearson Correlation</dcterms:title> <dc:creator>Berthold, Michael R.</dc:creator> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/34784"/> <dc:creator>Höppner, Frank</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-07-13T13:07:14Z</dcterms:available> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:rights>terms-of-use</dc:rights> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-07-13T13:07:14Z</dc:date> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/34784/1/Berthold_0-347884.pdf"/> </rdf:Description> </rdf:RDF>