Publikation:

Learning in parallel universes

Lade...
Vorschaubild

Dateien

Learning in parallel universes-erl.pdf
Learning in parallel universes-erl.pdfGröße: 10.9 MBDownloads: 907

Datum

2010

Autor:innen

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Data Mining and Knowledge Discovery. 2010, 21(1), pp. 130-152. ISSN 1384-5810. eISSN 1573-756X. Available under: doi: 10.1007/s10618-010-0170-1

Zusammenfassung

We discuss Learning in parallel universes as a learning concept that encompasses the simultaneous analysis from multiple descriptor spaces. In contrast to existing approaches, this approach constructs a global model that is based on only partially applicable, local models in each descriptor space. We present some application scenarios and compare this learning strategy to other approaches on learning in multiple descriptor spaces. As a representative for learning in parallel universes we introduce different extensions to a family of unsupervised fuzzy clustering algorithms and evaluate their performance on an artificial data set and a benchmark of 3D objects.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Parallel universes, Descriptor space, Clustering

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690WISWEDEL, Bernd, Frank HÖPPNER, Michael R. BERTHOLD, 2010. Learning in parallel universes. In: Data Mining and Knowledge Discovery. 2010, 21(1), pp. 130-152. ISSN 1384-5810. eISSN 1573-756X. Available under: doi: 10.1007/s10618-010-0170-1
BibTex
@article{Wiswedel2010Learn-12634,
  year={2010},
  doi={10.1007/s10618-010-0170-1},
  title={Learning in parallel universes},
  number={1},
  volume={21},
  issn={1384-5810},
  journal={Data Mining and Knowledge Discovery},
  pages={130--152},
  author={Wiswedel, Bernd and Höppner, Frank and Berthold, Michael R.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/12634">
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/12634/2/Learning%20in%20parallel%20universes-erl.pdf"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-07-06T12:56:33Z</dcterms:available>
    <dcterms:title>Learning in parallel universes</dcterms:title>
    <dc:creator>Wiswedel, Bernd</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Wiswedel, Bernd</dc:contributor>
    <dcterms:issued>2010</dcterms:issued>
    <dc:creator>Berthold, Michael R.</dc:creator>
    <dc:creator>Höppner, Frank</dc:creator>
    <dc:contributor>Berthold, Michael R.</dc:contributor>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/12634/2/Learning%20in%20parallel%20universes-erl.pdf"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-07-06T12:56:33Z</dc:date>
    <dc:language>eng</dc:language>
    <dcterms:abstract xml:lang="eng">We discuss Learning in parallel universes as a learning concept that encompasses the simultaneous analysis from multiple descriptor spaces. In contrast to existing approaches, this approach constructs a global model that is based on only partially applicable, local models in each descriptor space. We present some application scenarios and compare this learning strategy to other approaches on learning in multiple descriptor spaces. As a representative for learning in parallel universes we introduce different extensions to a family of unsupervised fuzzy clustering algorithms and evaluate their performance on an artificial data set and a benchmark of 3D objects.</dcterms:abstract>
    <dc:contributor>Höppner, Frank</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:bibliographicCitation>Data Mining and Knowledge Discovery ; 21 (2010), 1. - S. 130-152</dcterms:bibliographicCitation>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/12634"/>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen