Publikation: Convex entropy, Hopf bifurcation, and viscous and inviscid shock stability
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
We consider by a combination of analytical and numerical techniques some basic questions regarding the relations between inviscid and viscous stability and existence of a convex entropy. Specifically, for a system possessing a convex entropy, in particular for the equations of gas dynamics with a convex equation of state, we ask: (i) can inviscid instability occur? (ii) can there occur viscous instability not detected by inviscid theory? (iii) can there occur the - necessarily viscous - effect of Hopf bifurcation, or "galloping instability"? and, perhaps most important from a practical point of view, (iv) as shock amplitude is increased from the (stable) weak-amplitude limit, can there occur a first transition from viscous stability to instability that is not detected by inviscid theory? We show that (i) does occur for strictly hyperbolic, genuinely nonlinear gas dynamics with certain convex equations of state, while (ii) and (iii) do occur for an artifically constructed system with convex viscosity-compatible entropy. We do not know of an example for which (iv) occurs, leaving this as a key open question in viscous shock theory, related to the principal eigenvalue property of Sturm Liouville and related operators. In analogy with, and partly proceeding close to, the analysis of Smith on (non-)uniqueness of the Riemann problem, we obtain convenient criteria for shock (in)stability in the form of necessary and sufficient conditions on the equation of state.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
BARKER, Blake, Heinrich FREISTÜHLER, Kevin ZUMBRUN, 2012. Convex entropy, Hopf bifurcation, and viscous and inviscid shock stabilityBibTex
@unpublished{Barker2012Conve-23632, year={2012}, title={Convex entropy, Hopf bifurcation, and viscous and inviscid shock stability}, author={Barker, Blake and Freistühler, Heinrich and Zumbrun, Kevin} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/23632"> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-06-14T06:04:41Z</dc:date> <dc:contributor>Barker, Blake</dc:contributor> <dcterms:title>Convex entropy, Hopf bifurcation, and viscous and inviscid shock stability</dcterms:title> <dc:creator>Barker, Blake</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-06-14T06:04:41Z</dcterms:available> <dc:creator>Zumbrun, Kevin</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:abstract xml:lang="eng">We consider by a combination of analytical and numerical techniques some basic questions regarding the relations between inviscid and viscous stability and existence of a convex entropy. Specifically, for a system possessing a convex entropy, in particular for the equations of gas dynamics with a convex equation of state, we ask: (i) can inviscid instability occur? (ii) can there occur viscous instability not detected by inviscid theory? (iii) can there occur the - necessarily viscous - effect of Hopf bifurcation, or "galloping instability"? and, perhaps most important from a practical point of view, (iv) as shock amplitude is increased from the (stable) weak-amplitude limit, can there occur a first transition from viscous stability to instability that is not detected by inviscid theory? We show that (i) does occur for strictly hyperbolic, genuinely nonlinear gas dynamics with certain convex equations of state, while (ii) and (iii) do occur for an artifically constructed system with convex viscosity-compatible entropy. We do not know of an example for which (iv) occurs, leaving this as a key open question in viscous shock theory, related to the principal eigenvalue property of Sturm Liouville and related operators. In analogy with, and partly proceeding close to, the analysis of Smith on (non-)uniqueness of the Riemann problem, we obtain convenient criteria for shock (in)stability in the form of necessary and sufficient conditions on the equation of state.</dcterms:abstract> <dcterms:issued>2012</dcterms:issued> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:contributor>Freistühler, Heinrich</dc:contributor> <dc:rights>terms-of-use</dc:rights> <dc:language>eng</dc:language> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:creator>Freistühler, Heinrich</dc:creator> <dc:contributor>Zumbrun, Kevin</dc:contributor> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/23632"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> </rdf:Description> </rdf:RDF>