Publikation: Tuning antiferromagnetism of vacancies with magnetic fields in graphene nanoflakes
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Graphene nanoflakes are interesting because electrons are naturally confined in these quasi-zero-dimensional structures, whereas confinement in bulk graphene would require a band gap. Vacancies inside the graphene lattice lead to localized states and the spins of such localized states may be used for spintronics. We perform a tight-binding description of a nanoflake with two vacancies and include a perpendicular magnetic field via a Peierls phase. The tunnel coupling strength and from it the exchange coupling between the localized states can be obtained from the energy splitting between numerically calculated bonding and antibonding energy levels. This allows us to estimate the exchange coupling J, which governs the dynamics of coupled spins. We predict the possibility of switching in situ from J>0 to J=0 by tuning the magnetic field. In the former case, the ground state will be antiferromagnetic with Néel temperatures accessible by experiment.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
DROTH, Matthias, Guido BURKARD, 2015. Tuning antiferromagnetism of vacancies with magnetic fields in graphene nanoflakes. In: Physical Review B. 2015, 91(11), 115439. ISSN 0163-1829. eISSN 1095-3795. Available under: doi: 10.1103/PhysRevB.91.115439BibTex
@article{Droth2015Tunin-30860, year={2015}, doi={10.1103/PhysRevB.91.115439}, title={Tuning antiferromagnetism of vacancies with magnetic fields in graphene nanoflakes}, number={11}, volume={91}, issn={0163-1829}, journal={Physical Review B}, author={Droth, Matthias and Burkard, Guido}, note={Article Number: 115439} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/30860"> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <dc:contributor>Burkard, Guido</dc:contributor> <dcterms:title>Tuning antiferromagnetism of vacancies with magnetic fields in graphene nanoflakes</dcterms:title> <dcterms:issued>2015</dcterms:issued> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Droth, Matthias</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-05-04T08:49:23Z</dc:date> <dc:creator>Burkard, Guido</dc:creator> <dc:language>eng</dc:language> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <dc:contributor>Droth, Matthias</dc:contributor> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/30860"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-05-04T08:49:23Z</dcterms:available> <dcterms:abstract xml:lang="eng">Graphene nanoflakes are interesting because electrons are naturally confined in these quasi-zero-dimensional structures, whereas confinement in bulk graphene would require a band gap. Vacancies inside the graphene lattice lead to localized states and the spins of such localized states may be used for spintronics. We perform a tight-binding description of a nanoflake with two vacancies and include a perpendicular magnetic field via a Peierls phase. The tunnel coupling strength and from it the exchange coupling between the localized states can be obtained from the energy splitting between numerically calculated bonding and antibonding energy levels. This allows us to estimate the exchange coupling J, which governs the dynamics of coupled spins. We predict the possibility of switching in situ from J>0 to J=0 by tuning the magnetic field. In the former case, the ground state will be antiferromagnetic with Néel temperatures accessible by experiment.</dcterms:abstract> </rdf:Description> </rdf:RDF>