Publikation: Building a Data Warehouse for Twitter Stream Exploration
Dateien
Datum
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
In the recent year Twitter has evolved into an extremely popular social network and has revolutionized the ways of interacting and exchanging information on the Internet. By making its public stream available through a set of APIs Twitter has triggered a wave of research initiatives aimed at analysis and knowledge discovery from the data about its users and their messaging activities. While most of the projects and tools are tailored towards solving specific tasks, we pursue a goal of providing an application in dependent and universal analytical platform for supporting any kind of analysis and knowledge discovery. We employ the well established data warehousing technology with its underlying multidimensional data model, ETL routine for loading and consolidating data from different sources, OLAP functionality for exploring the data and data mining tools for more sophisticated analysis. In this work we describe the process of transforming the original stream into a set of related multidimensional cubes and demonstrate how the resulting data warehouse can be used for solving a variety of analytical tasks. We expect our proposed approach to be applicable for analyzing the data of other social networks as well.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
REHMAN, Nafees Ur, Svetlana MANSMANN, Andreas WEILER, Marc H. SCHOLL, 2012. Building a Data Warehouse for Twitter Stream Exploration. 2012 International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2012). Istanbul, 26. Aug. 2012 - 29. Aug. 2012. In: 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining. IEEE, 2012, pp. 1341-1348. ISBN 978-1-4673-2497-7. Available under: doi: 10.1109/ASONAM.2012.230BibTex
@inproceedings{Rehman2012-08Build-25232, year={2012}, doi={10.1109/ASONAM.2012.230}, title={Building a Data Warehouse for Twitter Stream Exploration}, isbn={978-1-4673-2497-7}, publisher={IEEE}, booktitle={2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining}, pages={1341--1348}, author={Rehman, Nafees Ur and Mansmann, Svetlana and Weiler, Andreas and Scholl, Marc H.} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/25232"> <dc:creator>Mansmann, Svetlana</dc:creator> <dcterms:issued>2012-08</dcterms:issued> <dc:creator>Rehman, Nafees Ur</dc:creator> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/25232/2/Rehmann_252327.pdf"/> <dcterms:abstract xml:lang="eng">In the recent year Twitter has evolved into an extremely popular social network and has revolutionized the ways of interacting and exchanging information on the Internet. By making its public stream available through a set of APIs Twitter has triggered a wave of research initiatives aimed at analysis and knowledge discovery from the data about its users and their messaging activities. While most of the projects and tools are tailored towards solving specific tasks, we pursue a goal of providing an application in dependent and universal analytical platform for supporting any kind of analysis and knowledge discovery. We employ the well established data warehousing technology with its underlying multidimensional data model, ETL routine for loading and consolidating data from different sources, OLAP functionality for exploring the data and data mining tools for more sophisticated analysis. In this work we describe the process of transforming the original stream into a set of related multidimensional cubes and demonstrate how the resulting data warehouse can be used for solving a variety of analytical tasks. We expect our proposed approach to be applicable for analyzing the data of other social networks as well.</dcterms:abstract> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-11-22T10:21:02Z</dc:date> <dc:contributor>Weiler, Andreas</dc:contributor> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/25232/2/Rehmann_252327.pdf"/> <dcterms:title>Building a Data Warehouse for Twitter Stream Exploration</dcterms:title> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dcterms:bibliographicCitation>2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM), IEEE Computer Society. - 1 (2012). - S. 1341-1348. - ISBN 978-0-7695-4799-2, Istanbul, Turkey, August 2012, IEEE Press.</dcterms:bibliographicCitation> <dc:language>eng</dc:language> <dc:contributor>Scholl, Marc H.</dc:contributor> <dc:contributor>Rehman, Nafees Ur</dc:contributor> <dc:creator>Scholl, Marc H.</dc:creator> <dc:rights>terms-of-use</dc:rights> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Mansmann, Svetlana</dc:contributor> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/25232"/> <dc:creator>Weiler, Andreas</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-11-22T10:21:02Z</dcterms:available> <foaf:homepage rdf:resource="http://localhost:8080/"/> </rdf:Description> </rdf:RDF>