Publikation:

Building a Data Warehouse for Twitter Stream Exploration

Lade...
Vorschaubild

Dateien

Rehmann_252327.pdf
Rehmann_252327.pdfGröße: 957.05 KBDownloads: 3230

Datum

2012

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Exploration und Visualisierung großer Informationsmengen
Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining. IEEE, 2012, pp. 1341-1348. ISBN 978-1-4673-2497-7. Available under: doi: 10.1109/ASONAM.2012.230

Zusammenfassung

In the recent year Twitter has evolved into an extremely popular social network and has revolutionized the ways of interacting and exchanging information on the Internet. By making its public stream available through a set of APIs Twitter has triggered a wave of research initiatives aimed at analysis and knowledge discovery from the data about its users and their messaging activities. While most of the projects and tools are tailored towards solving specific tasks, we pursue a goal of providing an application in dependent and universal analytical platform for supporting any kind of analysis and knowledge discovery. We employ the well established data warehousing technology with its underlying multidimensional data model, ETL routine for loading and consolidating data from different sources, OLAP functionality for exploring the data and data mining tools for more sophisticated analysis. In this work we describe the process of transforming the original stream into a set of related multidimensional cubes and demonstrate how the resulting data warehouse can be used for solving a variety of analytical tasks. We expect our proposed approach to be applicable for analyzing the data of other social networks as well.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Twitter, Data mining, Data models, Data Warehouses, OLAP, Social Network

Konferenz

2012 International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2012), 26. Aug. 2012 - 29. Aug. 2012, Istanbul
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690REHMAN, Nafees Ur, Svetlana MANSMANN, Andreas WEILER, Marc H. SCHOLL, 2012. Building a Data Warehouse for Twitter Stream Exploration. 2012 International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2012). Istanbul, 26. Aug. 2012 - 29. Aug. 2012. In: 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining. IEEE, 2012, pp. 1341-1348. ISBN 978-1-4673-2497-7. Available under: doi: 10.1109/ASONAM.2012.230
BibTex
@inproceedings{Rehman2012-08Build-25232,
  year={2012},
  doi={10.1109/ASONAM.2012.230},
  title={Building a Data Warehouse for Twitter Stream Exploration},
  isbn={978-1-4673-2497-7},
  publisher={IEEE},
  booktitle={2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining},
  pages={1341--1348},
  author={Rehman, Nafees Ur and Mansmann, Svetlana and Weiler, Andreas and Scholl, Marc H.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/25232">
    <dc:creator>Mansmann, Svetlana</dc:creator>
    <dcterms:issued>2012-08</dcterms:issued>
    <dc:creator>Rehman, Nafees Ur</dc:creator>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/25232/2/Rehmann_252327.pdf"/>
    <dcterms:abstract xml:lang="eng">In the recent year Twitter has evolved into an extremely popular social network and has revolutionized the ways of interacting and exchanging information on the Internet. By making its public stream available through a set of APIs Twitter has triggered a wave of research initiatives aimed at analysis and knowledge discovery from the data about its users and their messaging activities. While most of the projects and tools are tailored towards solving specific tasks, we pursue a goal of providing an application in dependent and universal analytical platform for supporting any kind of analysis and knowledge discovery. We employ the well established data warehousing technology with its underlying multidimensional data model, ETL routine for loading and consolidating data from different sources, OLAP functionality for exploring the data and data mining tools for more sophisticated analysis. In this work we describe the process of transforming the original stream into a set of related multidimensional cubes and demonstrate how the resulting data warehouse can be used for solving a variety of analytical tasks. We expect our proposed approach to be applicable for analyzing the data of other social networks as well.</dcterms:abstract>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-11-22T10:21:02Z</dc:date>
    <dc:contributor>Weiler, Andreas</dc:contributor>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/25232/2/Rehmann_252327.pdf"/>
    <dcterms:title>Building a Data Warehouse for Twitter Stream Exploration</dcterms:title>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:bibliographicCitation>2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM), IEEE Computer Society. - 1 (2012). - S. 1341-1348. - ISBN 978-0-7695-4799-2,   Istanbul, Turkey, August 2012, IEEE Press.</dcterms:bibliographicCitation>
    <dc:language>eng</dc:language>
    <dc:contributor>Scholl, Marc H.</dc:contributor>
    <dc:contributor>Rehman, Nafees Ur</dc:contributor>
    <dc:creator>Scholl, Marc H.</dc:creator>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Mansmann, Svetlana</dc:contributor>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/25232"/>
    <dc:creator>Weiler, Andreas</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-11-22T10:21:02Z</dcterms:available>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen