Publikation:

Algorithm appreciation or aversion? : Comparing in-service and pre-service teachers’ acceptance of computerized expert models

Lade...
Vorschaubild

Dateien

Kaufmann_2-x8i85cpagulz9.pdf
Kaufmann_2-x8i85cpagulz9.pdfGröße: 1.81 MBDownloads: 170

Datum

2021

Autor:innen

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Link zur Lizenz

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Gold
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Computers and Education: Artificial Intelligence. Elsevier. 2021, 2, 100028. eISSN 2666-920X. Available under: doi: 10.1016/j.caeai.2021.100028

Zusammenfassung

Although computerized expert models (i.e., algorithms) could improve educational decisions and judgments, initial research has demonstrated that teachers, like other professional groups, tend to be “algorithm averse.” In the current study, we use behavioral and questionnaire data to examine the extent to which in-service and pre-service (i.e., students in training to become) teachers accept advice from expert models and investigate how teachers' acceptance of expert models could be improved. Although it is often presumed that younger generations are less algorithm averse, we demonstrate that both in-service and pre-service teachers prefer advice from a human source (school counselor) than from an expert model, to a similar extent. Furthermore, we find that advice acceptance depends on the difficulty of the decision task, but we find no evidence that pre-service teachers’ acceptance of computerized advice depends on their numeracy or the Big Five traits of openness and neuroticism. Finally, we find that in-service teachers lacked knowledge of computerized expert models but indicated that advice from expert models would be superior to human advice in certain kinds of tasks. Our results indicate that both in- and pre-service teachers could profit from training about the definition and value of computerized expert models, and we provide suggestions for training and future research.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
150 Psychologie

Schlagwörter

Artificial intelligence, Digitalization, Algorithm acceptance, Teacher education, Pre-service teachers

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690KAUFMANN, Esther, 2021. Algorithm appreciation or aversion? : Comparing in-service and pre-service teachers’ acceptance of computerized expert models. In: Computers and Education: Artificial Intelligence. Elsevier. 2021, 2, 100028. eISSN 2666-920X. Available under: doi: 10.1016/j.caeai.2021.100028
BibTex
@article{Kaufmann2021Algor-56560,
  year={2021},
  doi={10.1016/j.caeai.2021.100028},
  title={Algorithm appreciation or aversion? : Comparing in-service and pre-service teachers’ acceptance of computerized expert models},
  volume={2},
  journal={Computers and Education: Artificial Intelligence},
  author={Kaufmann, Esther},
  note={Article Number: 100028}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/56560">
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:rights>Attribution 4.0 International</dc:rights>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43"/>
    <dc:contributor>Kaufmann, Esther</dc:contributor>
    <dc:language>eng</dc:language>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-02-15T09:31:50Z</dcterms:available>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/56560/1/Kaufmann_2-x8i85cpagulz9.pdf"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Kaufmann, Esther</dc:creator>
    <dcterms:issued>2021</dcterms:issued>
    <dcterms:abstract xml:lang="eng">Although computerized expert models (i.e., algorithms) could improve educational decisions and judgments, initial research has demonstrated that teachers, like other professional groups, tend to be “algorithm averse.” In the current study, we use behavioral and questionnaire data to examine the extent to which in-service and pre-service (i.e., students in training to become) teachers accept advice from expert models and investigate how teachers' acceptance of expert models could be improved. Although it is often presumed that younger generations are less algorithm averse, we demonstrate that both in-service and pre-service teachers prefer advice from a human source (school counselor) than from an expert model, to a similar extent. Furthermore, we find that advice acceptance depends on the difficulty of the decision task, but we find no evidence that pre-service teachers’ acceptance of computerized advice depends on their numeracy or the Big Five traits of openness and neuroticism. Finally, we find that in-service teachers lacked knowledge of computerized expert models but indicated that advice from expert models would be superior to human advice in certain kinds of tasks. Our results indicate that both in- and pre-service teachers could profit from training about the definition and value of computerized expert models, and we provide suggestions for training and future research.</dcterms:abstract>
    <dcterms:title>Algorithm appreciation or aversion? : Comparing in-service and pre-service teachers’ acceptance of computerized expert models</dcterms:title>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-02-15T09:31:50Z</dc:date>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/56560"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/56560/1/Kaufmann_2-x8i85cpagulz9.pdf"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen