Publikation: Media Bias in German News Articles : A Combined Approach
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Slanted news coverage, also called media bias, can heavily influence how news consumers interpret and react to the news. Models to identify and describe biases have been proposed across various scientific fields, focusing mostly on English media. In this paper, we propose a method for analyzing media bias in German media. We test different natural language processing techniques and combinations thereof. Specifically, we combine an IDF-based component, a specially created bias lexicon, and a linguistic lexicon. We also flexibly extend our lexica by the usage of word embeddings. We evaluate the system and methods in a survey (N = 46), comparing the bias words our system detected to human annotations. So far, the best component combination results in an F1 score of 0.31 of words that were identified as biased by our system and our study participants. The low performance shows that the analysis of media bias is still a difficult task, but using fewer resources, we achieved the same performance on the same task than recent research on English. We summarize the next steps in improving the resources and the overall results.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
SPINDE, Timo, Felix HAMBORG, Bela GIPP, 2021. Media Bias in German News Articles : A Combined Approach. ECML PKDD 2020 Workshops. Ghent, Belgium, 14. Sept. 2020 - 18. Sept. 2020. In: KOPRINSKA, Irena, ed., Michael KAMP, ed., Annalisa APPICE, ed. and others. ECML PKDD 2020 Workshops : Workshops of the European Conference on Machine Learning and Knowledge Discovery in Databases, Proceedings. Cham: Springer International Publishing, 2021, pp. 581-590. Communications in Computer and Information Science. 1323. ISSN 1865-0929. eISSN 1865-0937. ISBN 978-3-030-65964-6. Available under: doi: 10.1007/978-3-030-65965-3_41BibTex
@inproceedings{Spinde2021-02-02Media-55901, year={2021}, doi={10.1007/978-3-030-65965-3_41}, title={Media Bias in German News Articles : A Combined Approach}, number={1323}, isbn={978-3-030-65964-6}, issn={1865-0929}, publisher={Springer International Publishing}, address={Cham}, series={Communications in Computer and Information Science}, booktitle={ECML PKDD 2020 Workshops : Workshops of the European Conference on Machine Learning and Knowledge Discovery in Databases, Proceedings}, pages={581--590}, editor={Koprinska, Irena and Kamp, Michael and Appice, Annalisa}, author={Spinde, Timo and Hamborg, Felix and Gipp, Bela} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/55901"> <dc:creator>Spinde, Timo</dc:creator> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/55901/1/Spinde_2-x72iwmsmza9c8.pdf"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:issued>2021-02-02</dcterms:issued> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:contributor>Gipp, Bela</dc:contributor> <dcterms:title>Media Bias in German News Articles : A Combined Approach</dcterms:title> <dc:creator>Gipp, Bela</dc:creator> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/55901"/> <dc:contributor>Hamborg, Felix</dc:contributor> <dc:rights>Attribution 4.0 International</dc:rights> <dc:creator>Hamborg, Felix</dc:creator> <dcterms:abstract xml:lang="eng">Slanted news coverage, also called media bias, can heavily influence how news consumers interpret and react to the news. Models to identify and describe biases have been proposed across various scientific fields, focusing mostly on English media. In this paper, we propose a method for analyzing media bias in German media. We test different natural language processing techniques and combinations thereof. Specifically, we combine an IDF-based component, a specially created bias lexicon, and a linguistic lexicon. We also flexibly extend our lexica by the usage of word embeddings. We evaluate the system and methods in a survey (N = 46), comparing the bias words our system detected to human annotations. So far, the best component combination results in an F<sub>1</sub> score of 0.31 of words that were identified as biased by our system and our study participants. The low performance shows that the analysis of media bias is still a difficult task, but using fewer resources, we achieved the same performance on the same task than recent research on English. We summarize the next steps in improving the resources and the overall results.</dcterms:abstract> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-12-15T14:23:04Z</dc:date> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/55901/1/Spinde_2-x72iwmsmza9c8.pdf"/> <dc:language>eng</dc:language> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Spinde, Timo</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-12-15T14:23:04Z</dcterms:available> </rdf:Description> </rdf:RDF>