Publikation:

Media Bias in German News Articles : A Combined Approach

Lade...
Vorschaubild

Dateien

Spinde_2-x72iwmsmza9c8.pdf
Spinde_2-x72iwmsmza9c8.pdfGröße: 942.42 KBDownloads: 390

Datum

2021

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Link zur Lizenz

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Bookpart
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

KOPRINSKA, Irena, ed., Michael KAMP, ed., Annalisa APPICE, ed. and others. ECML PKDD 2020 Workshops : Workshops of the European Conference on Machine Learning and Knowledge Discovery in Databases, Proceedings. Cham: Springer International Publishing, 2021, pp. 581-590. Communications in Computer and Information Science. 1323. ISSN 1865-0929. eISSN 1865-0937. ISBN 978-3-030-65964-6. Available under: doi: 10.1007/978-3-030-65965-3_41

Zusammenfassung

Slanted news coverage, also called media bias, can heavily influence how news consumers interpret and react to the news. Models to identify and describe biases have been proposed across various scientific fields, focusing mostly on English media. In this paper, we propose a method for analyzing media bias in German media. We test different natural language processing techniques and combinations thereof. Specifically, we combine an IDF-based component, a specially created bias lexicon, and a linguistic lexicon. We also flexibly extend our lexica by the usage of word embeddings. We evaluate the system and methods in a survey (N = 46), comparing the bias words our system detected to human annotations. So far, the best component combination results in an F1 score of 0.31 of words that were identified as biased by our system and our study participants. The low performance shows that the analysis of media bias is still a difficult task, but using fewer resources, we achieved the same performance on the same task than recent research on English. We summarize the next steps in improving the resources and the overall results.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Media bias, News slant, News bias, Content analysis, Frame analysis

Konferenz

ECML PKDD 2020 Workshops, 14. Sept. 2020 - 18. Sept. 2020, Ghent, Belgium
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Verknüpfte Datensätze

Zitieren

ISO 690SPINDE, Timo, Felix HAMBORG, Bela GIPP, 2021. Media Bias in German News Articles : A Combined Approach. ECML PKDD 2020 Workshops. Ghent, Belgium, 14. Sept. 2020 - 18. Sept. 2020. In: KOPRINSKA, Irena, ed., Michael KAMP, ed., Annalisa APPICE, ed. and others. ECML PKDD 2020 Workshops : Workshops of the European Conference on Machine Learning and Knowledge Discovery in Databases, Proceedings. Cham: Springer International Publishing, 2021, pp. 581-590. Communications in Computer and Information Science. 1323. ISSN 1865-0929. eISSN 1865-0937. ISBN 978-3-030-65964-6. Available under: doi: 10.1007/978-3-030-65965-3_41
BibTex
@inproceedings{Spinde2021-02-02Media-55901,
  year={2021},
  doi={10.1007/978-3-030-65965-3_41},
  title={Media Bias in German News Articles : A Combined Approach},
  number={1323},
  isbn={978-3-030-65964-6},
  issn={1865-0929},
  publisher={Springer International Publishing},
  address={Cham},
  series={Communications in Computer and Information Science},
  booktitle={ECML PKDD 2020 Workshops : Workshops of the European Conference on Machine Learning and Knowledge Discovery in Databases, Proceedings},
  pages={581--590},
  editor={Koprinska, Irena and Kamp, Michael and Appice, Annalisa},
  author={Spinde, Timo and Hamborg, Felix and Gipp, Bela}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/55901">
    <dc:creator>Spinde, Timo</dc:creator>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/55901/1/Spinde_2-x72iwmsmza9c8.pdf"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:issued>2021-02-02</dcterms:issued>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Gipp, Bela</dc:contributor>
    <dcterms:title>Media Bias in German News Articles : A Combined Approach</dcterms:title>
    <dc:creator>Gipp, Bela</dc:creator>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/55901"/>
    <dc:contributor>Hamborg, Felix</dc:contributor>
    <dc:rights>Attribution 4.0 International</dc:rights>
    <dc:creator>Hamborg, Felix</dc:creator>
    <dcterms:abstract xml:lang="eng">Slanted news coverage, also called media bias, can heavily influence how news consumers interpret and react to the news. Models to identify and describe biases have been proposed across various scientific fields, focusing mostly on English media. In this paper, we propose a method for analyzing media bias in German media. We test different natural language processing techniques and combinations thereof. Specifically, we combine an IDF-based component, a specially created bias lexicon, and a linguistic lexicon. We also flexibly extend our lexica by the usage of word embeddings. We evaluate the system and methods in a survey (N = 46), comparing the bias words our system detected to human annotations. So far, the best component combination results in an F&lt;sub&gt;1&lt;/sub&gt; score of 0.31 of words that were identified as biased by our system and our study participants. The low performance shows that the analysis of media bias is still a difficult task, but using fewer resources, we achieved the same performance on the same task than recent research on English. We summarize the next steps in improving the resources and the overall results.</dcterms:abstract>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-12-15T14:23:04Z</dc:date>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/55901/1/Spinde_2-x72iwmsmza9c8.pdf"/>
    <dc:language>eng</dc:language>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Spinde, Timo</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-12-15T14:23:04Z</dcterms:available>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Diese Publikation teilen