Publikation:

Analyzing Mathematical Content to Detect Academic Plagiarism

Lade...
Vorschaubild

Dateien

Meuschke_2-wy9aqw7lbcn20.pdf
Meuschke_2-wy9aqw7lbcn20.pdfGröße: 146.75 KBDownloads: 549

Datum

2017

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

LIM, Ee-Peng, ed.. CIKM 2017 : proceedings of the 2017 ACM Conference on Information and Knowledge Management : November 6-10, 2017, Singapore. New York, New York, USA: ACM Press, 2017, pp. 2211-2214. ISBN 978-1-4503-4918-5. Available under: doi: 10.1145/3132847.3133144

Zusammenfassung

This paper presents, to our knowledge, the first study on analyzing mathematical expressions to detect academic plagiarism. We make the following contributions. First, we investigate confirmed cases of plagiarism to categorize the similarities of mathematical content commonly found in plagiarized publications. From this investigation, we derive possible feature selection and feature comparison strategies for developing math-based detection approaches and a ground truth for our experiments. Second, we create a test collection by embedding confirmed cases of plagiarism into the NTCIR-11 MathIR Task dataset, which contains approx. 60 million mathematical expressions in 105,120 documents from arXiv.org. Third, we develop a first math-based detection approach by implementing and evaluating different feature comparison approaches using an open source parallel data processing pipeline built using the Apache Flink framework. The best performing approach identifies all but two of our real-world test cases at the top rank and achieves a mean reciprocal rank of 0.86. The results show that mathematical expressions are promising text-independent features to identify academic plagiarism in large collections. To facilitate future research on math-based plagiarism detection, we make our source code and data available.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

CIKM 2017 : ACM Conference on Information and Knowledge Management, 6. Nov. 2017 - 10. Nov. 2017, Singapore
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690MEUSCHKE, Norman, Moritz SCHUBOTZ, Felix HAMBORG, Tomas SKOPAL, Bela GIPP, 2017. Analyzing Mathematical Content to Detect Academic Plagiarism. CIKM 2017 : ACM Conference on Information and Knowledge Management. Singapore, 6. Nov. 2017 - 10. Nov. 2017. In: LIM, Ee-Peng, ed.. CIKM 2017 : proceedings of the 2017 ACM Conference on Information and Knowledge Management : November 6-10, 2017, Singapore. New York, New York, USA: ACM Press, 2017, pp. 2211-2214. ISBN 978-1-4503-4918-5. Available under: doi: 10.1145/3132847.3133144
BibTex
@inproceedings{Meuschke2017Analy-41875,
  year={2017},
  doi={10.1145/3132847.3133144},
  title={Analyzing Mathematical Content to Detect Academic Plagiarism},
  isbn={978-1-4503-4918-5},
  publisher={ACM Press},
  address={New York, New York, USA},
  booktitle={CIKM 2017 : proceedings of the 2017 ACM Conference on Information and Knowledge Management : November 6-10, 2017, Singapore},
  pages={2211--2214},
  editor={Lim, Ee-Peng},
  author={Meuschke, Norman and Schubotz, Moritz and Hamborg, Felix and Skopal, Tomas and Gipp, Bela}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41875">
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/41875/1/Meuschke_2-wy9aqw7lbcn20.pdf"/>
    <dc:creator>Hamborg, Felix</dc:creator>
    <dc:contributor>Gipp, Bela</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-03-21T11:01:42Z</dc:date>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/41875/1/Meuschke_2-wy9aqw7lbcn20.pdf"/>
    <dc:language>eng</dc:language>
    <dc:contributor>Hamborg, Felix</dc:contributor>
    <dcterms:abstract xml:lang="eng">This paper presents, to our knowledge, the first study on analyzing mathematical expressions to detect academic plagiarism. We make the following contributions. First, we investigate confirmed cases of plagiarism to categorize the similarities of mathematical content commonly found in plagiarized publications. From this investigation, we derive possible feature selection and feature comparison strategies for developing math-based detection approaches and a ground truth for our experiments. Second, we create a test collection by embedding confirmed cases of plagiarism into the NTCIR-11 MathIR Task dataset, which contains approx. 60 million mathematical expressions in 105,120 documents from arXiv.org. Third, we develop a first math-based detection approach by implementing and evaluating different feature comparison approaches using an open source parallel data processing pipeline built using the Apache Flink framework. The best performing approach identifies all but two of our real-world test cases at the top rank and achieves a mean reciprocal rank of 0.86. The results show that mathematical expressions are promising text-independent features to identify academic plagiarism in large collections. To facilitate future research on math-based plagiarism detection, we make our source code and data available.</dcterms:abstract>
    <dc:creator>Meuschke, Norman</dc:creator>
    <dc:creator>Gipp, Bela</dc:creator>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:creator>Skopal, Tomas</dc:creator>
    <dcterms:issued>2017</dcterms:issued>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/41875"/>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:title>Analyzing Mathematical Content to Detect Academic Plagiarism</dcterms:title>
    <dc:contributor>Skopal, Tomas</dc:contributor>
    <dc:contributor>Schubotz, Moritz</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Meuschke, Norman</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Schubotz, Moritz</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-03-21T11:01:42Z</dcterms:available>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen