Publikation: Missing Values and Learning of Fuzzy Rules
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
In this paper a technique is proposed to tolerate missing values based on a system of fuzzy rules for classification. The presented method is mathematically solid but nevertheless easy and efficient to implement. Three possible applications of this methodology are outlined: the classification of patterns with an incomplete feature vector, the completion of the input vector when a certain class is desired, and the training or automatic construction of a fuzzy rule set based on incomplete training data. In contrast to a static replacement of the missing values, here the evolving model is used to predict the most possible values for the missing attributes. Benchmark datasets are used to demonstrate the capability of the presented approach in a fuzzy learning environment.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
BERTHOLD, Michael R., Klaus-Peter HUBER, 1998. Missing Values and Learning of Fuzzy Rules. In: International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems. 1998, 6(2), pp. 171-178. Available under: doi: 10.1142/S021848859800015XBibTex
@article{Berthold1998Missi-5566, year={1998}, doi={10.1142/S021848859800015X}, title={Missing Values and Learning of Fuzzy Rules}, number={2}, volume={6}, journal={International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems}, pages={171--178}, author={Berthold, Michael R. and Huber, Klaus-Peter} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/5566"> <dc:rights>Attribution-NonCommercial-NoDerivs 2.0 Generic</dc:rights> <dc:language>eng</dc:language> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T15:56:28Z</dc:date> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/2.0/"/> <dcterms:title>Missing Values and Learning of Fuzzy Rules</dcterms:title> <dc:format>application/pdf</dc:format> <foaf:homepage rdf:resource="http://localhost:8080/"/> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/5566"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5566/1/BeHu98_missingvalues_ijufkbs.pdf"/> <dc:creator>Huber, Klaus-Peter</dc:creator> <dcterms:issued>1998</dcterms:issued> <dc:contributor>Berthold, Michael R.</dc:contributor> <dc:contributor>Huber, Klaus-Peter</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T15:56:28Z</dcterms:available> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:creator>Berthold, Michael R.</dc:creator> <dcterms:abstract xml:lang="eng">In this paper a technique is proposed to tolerate missing values based on a system of fuzzy rules for classification. The presented method is mathematically solid but nevertheless easy and efficient to implement. Three possible applications of this methodology are outlined: the classification of patterns with an incomplete feature vector, the completion of the input vector when a certain class is desired, and the training or automatic construction of a fuzzy rule set based on incomplete training data. In contrast to a static replacement of the missing values, here the evolving model is used to predict the most possible values for the missing attributes. Benchmark datasets are used to demonstrate the capability of the presented approach in a fuzzy learning environment.</dcterms:abstract> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5566/1/BeHu98_missingvalues_ijufkbs.pdf"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:bibliographicCitation>First publ. in: International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 6 (1998), 2, pp. 171-178</dcterms:bibliographicCitation> </rdf:Description> </rdf:RDF>