Publikation: Forecasting with Bayesian Vector Autoregressions Estimated Using Professional Forecasts
Lade...
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2016
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Journal of Applied Econometrics. 2016, 31(6), pp. 1083-1099. ISSN 0883-7252. eISSN 1099-1255. Available under: doi: 10.1002/jae.2483
Zusammenfassung
We propose a Bayesian shrinkage approach for vector autoregressions (VARs) that uses short-term survey forecasts as an additional source of information about model parameters. In particular, we augment the vector of dependent variables by their survey nowcasts, and claim that each variable modelled in the VAR and its nowcast are likely to depend in a similar way on the lagged dependent variables. In an application to macroeconomic data, we find that the forecasts obtained from a VAR fitted by our new shrinkage approach typically yield smaller mean squared forecast errors than the forecasts obtained from a range of benchmark methods.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
330 Wirtschaft
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690
FREY, Christoph, Frieder MOKINSKI, 2016. Forecasting with Bayesian Vector Autoregressions Estimated Using Professional Forecasts. In: Journal of Applied Econometrics. 2016, 31(6), pp. 1083-1099. ISSN 0883-7252. eISSN 1099-1255. Available under: doi: 10.1002/jae.2483BibTex
@article{Frey2016Forec-37504, year={2016}, doi={10.1002/jae.2483}, title={Forecasting with Bayesian Vector Autoregressions Estimated Using Professional Forecasts}, number={6}, volume={31}, issn={0883-7252}, journal={Journal of Applied Econometrics}, pages={1083--1099}, author={Frey, Christoph and Mokinski, Frieder} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/37504"> <dcterms:issued>2016</dcterms:issued> <dc:creator>Mokinski, Frieder</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-02-16T10:22:27Z</dc:date> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-02-16T10:22:27Z</dcterms:available> <dcterms:title>Forecasting with Bayesian Vector Autoregressions Estimated Using Professional Forecasts</dcterms:title> <dc:contributor>Frey, Christoph</dc:contributor> <dc:creator>Frey, Christoph</dc:creator> <dc:language>eng</dc:language> <dc:contributor>Mokinski, Frieder</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/46"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/46"/> <dcterms:abstract xml:lang="eng">We propose a Bayesian shrinkage approach for vector autoregressions (VARs) that uses short-term survey forecasts as an additional source of information about model parameters. In particular, we augment the vector of dependent variables by their survey nowcasts, and claim that each variable modelled in the VAR and its nowcast are likely to depend in a similar way on the lagged dependent variables. In an application to macroeconomic data, we find that the forecasts obtained from a VAR fitted by our new shrinkage approach typically yield smaller mean squared forecast errors than the forecasts obtained from a range of benchmark methods.</dcterms:abstract> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/37504"/> </rdf:Description> </rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja