Publikation:

Forecasting with Bayesian Vector Autoregressions Estimated Using Professional Forecasts

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2016

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Journal of Applied Econometrics. 2016, 31(6), pp. 1083-1099. ISSN 0883-7252. eISSN 1099-1255. Available under: doi: 10.1002/jae.2483

Zusammenfassung

We propose a Bayesian shrinkage approach for vector autoregressions (VARs) that uses short-term survey forecasts as an additional source of information about model parameters. In particular, we augment the vector of dependent variables by their survey nowcasts, and claim that each variable modelled in the VAR and its nowcast are likely to depend in a similar way on the lagged dependent variables. In an application to macroeconomic data, we find that the forecasts obtained from a VAR fitted by our new shrinkage approach typically yield smaller mean squared forecast errors than the forecasts obtained from a range of benchmark methods.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
330 Wirtschaft

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690FREY, Christoph, Frieder MOKINSKI, 2016. Forecasting with Bayesian Vector Autoregressions Estimated Using Professional Forecasts. In: Journal of Applied Econometrics. 2016, 31(6), pp. 1083-1099. ISSN 0883-7252. eISSN 1099-1255. Available under: doi: 10.1002/jae.2483
BibTex
@article{Frey2016Forec-37504,
  year={2016},
  doi={10.1002/jae.2483},
  title={Forecasting with Bayesian Vector Autoregressions Estimated Using Professional Forecasts},
  number={6},
  volume={31},
  issn={0883-7252},
  journal={Journal of Applied Econometrics},
  pages={1083--1099},
  author={Frey, Christoph and Mokinski, Frieder}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/37504">
    <dcterms:issued>2016</dcterms:issued>
    <dc:creator>Mokinski, Frieder</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-02-16T10:22:27Z</dc:date>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-02-16T10:22:27Z</dcterms:available>
    <dcterms:title>Forecasting with Bayesian Vector Autoregressions Estimated Using Professional Forecasts</dcterms:title>
    <dc:contributor>Frey, Christoph</dc:contributor>
    <dc:creator>Frey, Christoph</dc:creator>
    <dc:language>eng</dc:language>
    <dc:contributor>Mokinski, Frieder</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/46"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/46"/>
    <dcterms:abstract xml:lang="eng">We propose a Bayesian shrinkage approach for vector autoregressions (VARs) that uses short-term survey forecasts as an additional source of information about model parameters. In particular, we augment the vector of dependent variables by their survey nowcasts, and claim that each variable modelled in the VAR and its nowcast are likely to depend in a similar way on the lagged dependent variables. In an application to macroeconomic data, we find that the forecasts obtained from a VAR fitted by our new shrinkage approach typically yield smaller mean squared forecast errors than the forecasts obtained from a range of benchmark methods.</dcterms:abstract>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/37504"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen