Publikation: BARReL : Bottleneck Attention for Adversarial Robustness in Vision-Based Reinforcement Learning
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Robustness to adversarial perturbations has been explored in many areas of computer vision. This robustness is particularly relevant in vision-based reinforcement learning, as the actions of autonomous agents might be safety-critic or impactful in the real world. We investigate the susceptibility of vision-based reinforcement learning agents to gradient-based adversarial attacks and evaluate a potential defense. We observe that Bottleneck Attention Modules (BAM) included in CNN architectures can act as potential tools to increase robustness against adversarial attacks. We show how learned attention maps can be used to recover activations of a convolutional layer by restricting the spatial activations to salient regions. Across a number of RL environments, BAM-enhanced architectures show increased robustness during inference. Finally, we discuss potential future research directions.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
BYKOVETS, Eugene, Yannick METZ, Mennatallah EL-ASSADY, Daniel A. KEIM, Joachim M. BUHMANN, 2022. BARReL : Bottleneck Attention for Adversarial Robustness in Vision-Based Reinforcement LearningBibTex
@unpublished{Bykovets2022BARRe-58409, year={2022}, title={BARReL : Bottleneck Attention for Adversarial Robustness in Vision-Based Reinforcement Learning}, author={Bykovets, Eugene and Metz, Yannick and El-Assady, Mennatallah and Keim, Daniel A. and Buhmann, Joachim M.} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/58409"> <dc:contributor>Bykovets, Eugene</dc:contributor> <dc:creator>Keim, Daniel A.</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-08-29T14:25:15Z</dc:date> <dc:contributor>Buhmann, Joachim M.</dc:contributor> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/58409"/> <dc:creator>El-Assady, Mennatallah</dc:creator> <dc:contributor>Metz, Yannick</dc:contributor> <dc:rights>terms-of-use</dc:rights> <dc:creator>Buhmann, Joachim M.</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:contributor>Keim, Daniel A.</dc:contributor> <dcterms:issued>2022</dcterms:issued> <dc:contributor>El-Assady, Mennatallah</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:abstract xml:lang="eng">Robustness to adversarial perturbations has been explored in many areas of computer vision. This robustness is particularly relevant in vision-based reinforcement learning, as the actions of autonomous agents might be safety-critic or impactful in the real world. We investigate the susceptibility of vision-based reinforcement learning agents to gradient-based adversarial attacks and evaluate a potential defense. We observe that Bottleneck Attention Modules (BAM) included in CNN architectures can act as potential tools to increase robustness against adversarial attacks. We show how learned attention maps can be used to recover activations of a convolutional layer by restricting the spatial activations to salient regions. Across a number of RL environments, BAM-enhanced architectures show increased robustness during inference. Finally, we discuss potential future research directions.</dcterms:abstract> <dc:creator>Metz, Yannick</dc:creator> <dc:creator>Bykovets, Eugene</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-08-29T14:25:15Z</dcterms:available> <dcterms:title>BARReL : Bottleneck Attention for Adversarial Robustness in Vision-Based Reinforcement Learning</dcterms:title> <dc:language>eng</dc:language> </rdf:Description> </rdf:RDF>